Python数据分析之绘制相关性热力图的完整教程

前言

文章将介绍如何使用Python中的Pandas和Seaborn库来读取数据、计算相关系数矩阵,并绘制出直观、易于理解的热力图。我们将逐步介绍代码的编写和执行过程,并提供详细的解释和示例,以便读者能够轻松地跟随和理解。

大家记得需要准备以下条件数据:(大家可以看我上一篇文章
  • 确保数据集是干净的,没有缺失值或异常值。
  • 只选择数值型数据列进行相关性分析。
第一步:导入库
python 复制代码
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
第二步:加载数据
python 复制代码
data = pd.read_excel("result1_1.xlsx")
第三步:数据转换
python 复制代码
data = data.apply(pd.to_numeric, errors='coerce')

这行代码使用pandas的apply方法结合to_numeric函数,将数据框(data frame)data中的每一列尝试转换为数值类型。errors='coerce'参数意味着在转换过程中,如果遇到无法转换为数值的元素,将替换为NaN

第四步:计算相关性矩阵
python 复制代码
correlation_matrix = data.corr()

这行代码计算数据框data中所有列之间的相关系数,并将结果存储在correlation_matrix中。

第五步:绘制热力图
python 复制代码
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Heatmap')
plt.show()

这些代码行设置图表的大小,然后使用seaborn的heatmap函数绘制一个热力图,其中annot=True表示在热力图上显示每个单元格的具体数值,cmap='coolwarm'设置了颜色映射为coolwarm,fmt='.2f'设置了数值的格式为两位小数。最后,设置图表的标题为'Correlation Heatmap',并使用plt.show()显示图表。

第六步:查看效果

整个代码执行后,您将看到一个包含数据列之间相关系数的热力图,这有助于您可视化数据之间的关系!

本篇文章到这里就结束了,大家去试试自己的吧,点赞投币加收藏~

相关推荐
_OP_CHEN14 分钟前
C++基础:(十二)list类的基础使用
开发语言·数据结构·c++·stl·list类·list核心接口·list底层原理
Bellafu6661 小时前
selenium常用的等待有哪些?
python·selenium·测试工具
小白学大数据2 小时前
Python爬虫常见陷阱:Ajax动态生成内容的URL去重与数据拼接
爬虫·python·ajax
2401_841495643 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
Adorable老犀牛3 小时前
阿里云-ECS实例信息统计并发送统计报告到企业微信
python·阿里云·云计算·企业微信
ONE_PUNCH_Ge3 小时前
Go 语言变量
开发语言
幼稚园的山代王3 小时前
go语言了解
开发语言·后端·golang
倔强青铜三3 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三3 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
晚风残3 小时前
【C++ Primer】第六章:函数
开发语言·c++·算法·c++ primer