【prometheus】Pushgateway安装和使用

目录

一、Pushgateway概述

[1.1 Pushgateway简介](#1.1 Pushgateway简介)

[1.2 Pushgateway优点](#1.2 Pushgateway优点)

[1.3 pushgateway缺点](#1.3 pushgateway缺点)

二、测试环境

三、安装测试

[3.1 pushgateway安装](#3.1 pushgateway安装)

[3.2 prometheus添加pushgateway](#3.2 prometheus添加pushgateway)

[3.3 推送指定的数据格式到pushgateway](#3.3 推送指定的数据格式到pushgateway)

1.添加单条数据

2.添加复杂数据

3.SDk-prometheus-client使用



【Prometheus】概念和工作原理介绍_prometheus工作原理-CSDN博客

【Prometheus】k8s集群部署node-exporter_kubectl 安装 promethues node-exporter-CSDN博客

【prometheus】k8s集群部署prometheus server-CSDN博客

【prometheus】k8s集群部署Grafana安装和配置|Prometheus监控K8S

【prometheus】k8s集群部署AlertManager实现邮件和钉钉告警-CSDN博客

【prometheus】监控MySQL并实现可视化-CSDN博客

【prometheus】监控nginx-CSDN博客


一、Pushgateway概述


1.1 Pushgateway简介


Pushgateway是prometheus的一个组件,prometheus server默认是通过exporter主动获取数据(默认采取pull拉取数据),pushgateway则是通过被动方式推送数据到prometheus server,用户可以写一些自定义的监控脚本把需要监控的数据发送给pushgateway, 然后pushgateway再把数据发送给Prometheus server。

1.2 Pushgateway优点


  • Prometheus 默认采用定时pull 模式拉取targets数据,但是如果不在一个子网或者防火墙,prometheus就拉取不到targets数据,所以可以采用各个target往pushgateway上push数据,然后prometheus去pushgateway上定时pull数据
  • 在监控业务数据的时候,需要将不同数据汇总, 汇总之后的数据可以由pushgateway统一收集,然后由 Prometheus 统一拉取。

1.3 pushgateway缺点


  • Prometheus拉取状态只针对 pushgateway, 不能对每个节点都有效;
  • Pushgateway出现问题,整个采集到的数据都会出现问题
  • 监控下线,prometheus还会拉取到旧的监控数据,需要手动清理 pushgateway不要的数据。

二、测试环境


|----------------|---------|
| IP | 主机名 |
| 192.168.2.139 | master1 |
| 192.168.40.140 | node1 |


三、安装测试


3.1 pushgateway安装


在node1节点操作

复制代码
docker pull prom/pushgateway
docker run -d --name pushgateway -p 9091:9091 prom/pushgateway

在浏览器访问192.168.2.140:9091出现如下ui界面

3.2 prometheus添加pushgateway


修改prometheus-cfg.yaml文件

复制代码
- job_name: 'pushgateway'
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.2.140:9091']
   honor_labels: true

更新

复制代码
kubectl apply -f prometheus-alertmanager-cfg.yaml
kubectl delete -f prometheus-alertmanager-deploy.yaml
kubectl apply  -f prometheus-alertmanager-deploy.yaml

登录prometheus http://192.168.2.139:30242/targets

3.3 推送指定的数据格式到pushgateway


1.添加单条数据

复制代码
# 向 {job="test_job"} 添加单条数据:
echo " metric 3.6" | curl --data-binary @- http://192.168.2.140:9091/metrics/job/test_job

这里需要注意的是将<key & value>推送给pushgateway,curl --data-binary是将HTTP POST请求中的数据发送给HTTP服务器(pushgateway),和用户提交THML表单时浏览器的行为是一样的,HTTP POST请求中的数据为纯二进制数据。

prometheus web中查询

2.添加复杂数据

复制代码
# 添加复杂数据
cat <<EOF | curl --data-binary @- http://192.168.2.140:9091/metrics/job/test_job/instance/test_instance
# TYPE node_memory_usage gauge
node_memory_usage 26
# TYPE memory_total gauge
node_memory_total 26000
EOF

这条连接主要分为三个部分:

如下是删除某个实例

复制代码
# 删除某个组下某个实例的所有数据
curl -X DELETE http://192.168.2.140:9091/metrics/job/test_job/instance/test_instance

# 删除某个组下的所有数据:
curl -X DELETE http://192.168.2.140:9091/metrics/job/test_job

3.SDk-prometheus-client使用


python安装 prometheus_client

使用 pip 工具可以非常方便地安装 prometheus_client:

测试脚本

python 复制代码
# -*- coding: utf-8 -*-

# 导入所需的库
from prometheus_client import CollectorRegistry, Gauge, push_to_gateway


if __name__ == '__main__':
    # 定义和注册指标
    registry = CollectorRegistry()
    labels = ['req_status', 'req_method', 'req_url']
    g_one = Gauge('requests_total', 'url请求次数', labels, registry=registry)
    g_two = Gauge('avg_response_time_seconds', '1分钟内的URL平均响应时间', labels, registry=registry)

    # 收集和记录指标数据
    g_one.labels('200','GET', '/test/url').set(1) #set设定值
    g_two.labels('200','GET', '/test/api/url/').set(10) #set设定值

    # 推送指标数据到Pushgateway
    push_to_gateway('http://192.168.2.140:9091', job='SampleURLMetrics', registry=registry)

在这个示例中,我们定义了一个名为requests_total的指标,记录了一个值为1和10的示例数据,并将指标数据推送到了名为example_job的job中。

相关推荐
飞翔沫沫情6 小时前
Prometheus 监控 ESXi 实战
grafana·prometheus·esxi·vcenter 监控·vsphere 监控
莫非王土也非王臣8 小时前
Prometheus监控多个网站状态并推送到企业微信群机器人的完整方案
机器人·企业微信·prometheus
OpsEye1 天前
Redis 内存碎片的隐形消耗——如何用 memory purge 命令释放空间?
运维·网络·数据库·redis·缓存·内存·监控
goodlook01232 天前
监控平台搭建-日志-alloy篇(八)
grafana·prometheus
三不原则2 天前
实战:Prometheus 监控 GPU 使用率,设置智能告警阈值
prometheus
得物技术3 天前
深度实践:得物算法域全景可观测性从 0 到 1 的演进之路
监控
flying robot3 天前
Prometheus[2.33.3]grafana[12.3.1]监控安装
grafana·prometheus
盛世宏博北京4 天前
档案安全守护者:无人值守温湿度自动化管控方案
监控·档案温湿度·库房温湿度
货拉拉技术4 天前
面向可观测数据融合的 Exemplar
后端·监控