【GAN】简单的GAN模型搭建 -- 以线性模型和MNIST数据集为例子

文章目录

不讲原理,从简单的代码一步步开始,学会怎么用、怎么设计损失函数即可。

确定损失函数

生成器的任务是生成足够以假乱真的数据,判别器的任务是分辨出哪些数据是真实的,哪些数据是假的。因此,对于判别器来讲,需要判别真伪,也就是true/false,从这个角度看,是个二分类问题。所以损失函数使用二类分类损失,即BCELoss。

python 复制代码
import torch
import torch.nn as nn

adversarial_loss = nn.BCELoss()

生成器网络架构

这里使用纯线性网络作为生成器,得到的输出为[batch_size, np.pord(28*28)]

python 复制代码
import torch.nn as nn
import numpy as np

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_features, out_features, normalization=True):
            layers = [nn.Linear(in_features, out_features)]
            if normalization:
                layers.append(nn.BatchNorm1d(out_features, 0.8))
            layers.append(nn.LeakyReLU(0.2))
            return layers

        self.model = nn.Sequential(
            *block(100, 128, normalization=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod((1, 28, 28)))), # generate a photo size, but in line mode.
            nn.Tanh()
        )

    def forward(self, x):
        return self.model(x)

判别器网络架构:

判别器的功能为判断出来哪一个是生成的图片,哪一个是真实的图片。对于生成的图片,我们希望判别器打上假的标签,对于真实的图片,我们希望判别器打上真的标签,因此,判别器的输出为一个数,即0或者1。

python 复制代码
import torch.nn as nn
import numpy as np
class Disctiminator(nn.Module):
    def __init__(self):
        super(Disctiminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod((1, 28, 28))), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        img_flat = x.view(x.size(0), -1)
        validity = self.model(img_flat)
        return validity

训练流程:

载入数据 --- 训练 (生成图片 --- 损失 --- 反向传播) --- 测试(这里没有加测试代码,可以照着训练代码改一下)

损失函数:生成器损失函数和判别器损失函数,两个损失函数分别进行反向传播,即生成器损失函数优化生成器,判别器损失函数优化判别器。

python 复制代码
import torch
import torch.nn as nn
import argparse
import os
import numpy as np
from torch.utils.data import DataLoader, Dataset, dataset
from torchvision import datasets
from torchvision.transforms import transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from models.generator import Generator
from models.dicsriminator import Disctiminator





os.makedirs('/home/sjr/gxj/study/data/mnist', exist_ok=True)

dataloader = DataLoader(datasets.MNIST('/home/sjr/gxj/study/data/mnist',
                                       train=True, download=True,
                                       transform=transforms.Compose([transforms.Resize(28), transforms.ToTensor(),
                                                                     transforms.Normalize([0.5], [0.5])])
                                       ),
                        batch_size=64, shuffle=True, num_workers=4)

adversarial_loss = torch.nn.BCELoss()
generator = Generator()
discriminator = Disctiminator()

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
if torch.cuda.is_available():
    adversarial_loss.cuda(device)
    generator.cuda(device)
    discriminator.cuda(device)

optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))

Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor

for epoch in range(60):
    for i, (imgs, _) in enumerate(dataloader):
        valid = Tensor(imgs.size(0), 1).fill_(1.0)
        fake = Tensor(imgs.size(0), 1).fill_(0.0)
        real_imgs = Variable(imgs.type(Tensor))

        optimizer_G.zero_grad()

        z = Tensor(np.random.normal(0, 1, (imgs.shape[0], 100)))
        gen_imgs = generator(z)


        g_loss = adversarial_loss(discriminator(gen_imgs), valid)
        g_loss.backward()
        optimizer_G.step()

        optimizer_D.zero_grad()

        real_loss = adversarial_loss(discriminator(real_imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2
        d_loss.backward()
        optimizer_D.step()
        #
        print(f"[Epoch {epoch}/{200}] [Batch {i}/{len(dataloader)}] [D loss: {d_loss.item()}] [G loss: {g_loss.item()}]")
        #
        if (epoch + 1) % 20 == 0:
            save_image(gen_imgs.data[:25], f'images/{epoch+1}.png', nrow=5, normalize=True)
相关推荐
视***间3 分钟前
AI智能相机未来应用
人工智能·数码相机
优秘UMI6 分钟前
智能科技的附加特性:提升用户体验的多样选择
python·科技·其他·ai
加油吧zkf10 分钟前
卷积神经网络(CNN)
人工智能·深度学习·cnn
蓝博AI15 分钟前
基于卷积神经网络的汽车类型识别系统,resnet50,vgg16,resnet34【pytorch框架,python代码】
人工智能·pytorch·python·神经网络·cnn
whaosoft-14324 分钟前
51c大模型~合集43
人工智能
艾莉丝努力练剑26 分钟前
【C++:继承和多态】多态加餐:面试常考——多态的常见问题11问
开发语言·c++·人工智能·面试·继承·c++进阶
TextIn智能文档云平台34 分钟前
如何提高AI处理扫描文档的精度?
人工智能·自动化
麦麦大数据44 分钟前
F039 python五种算法美食推荐可视化大数据系统vue+flask前后端分离架构
python·算法·vue·推荐算法·美食·五种算法
喆星时瑜1 小时前
ComfyUI本地部署Stable Diffusion:核心组件(Python、PyTorch、CUDA)版本与显卡配置全指南
pytorch·python·stable diffusion
大佬,救命!!!1 小时前
定时打印的练习整理
linux·服务器·python·学习笔记·学习方法·定时发送