分布式本地缓存刷新-日常笔记

分布式本地缓存刷新是指在分布式系统中,当数据发生变化时,需要将相关数据从本地缓存中移除或更新。以下是一个基本的分布式本地缓存刷新方案:

  1. 通知机制:当数据发生改变时,可以通过消息队列或者分布式事件总线来发送通知给相关节点,告知数据已经发生变化。

  2. 缓存标记:每个缓存项可以附加一个标记,表示该缓存项对应的数据是否发生过变化。当数据发生改变时,更新标记,并将消息发送给相关节点。每个节点在接收到消息后,根据标记判断是否需要将该缓存项移除或更新。

  3. 过期时间:在设置缓存项时,可以为每个缓存项设置一个过期时间。当数据发生变化时,可以将过期时间设置为一个较小的值,使缓存项在过期时间后自动失效,然后通过按需加载的方式重新获取最新数据。

  4. 一致性哈希算法:通过一致性哈希算法,将所有的缓存项和节点映射到一个哈希环上。当数据发生变化时,可以根据哈希环的路由规则,确定需要更新的缓存项所在的节点,然后将更新消息发送给该节点。

  5. 弱一致性方案:考虑到分布式系统的特点,可以采用弱一致性方案。即在数据发生变化后,不立即移除或更新所有的缓存项,而是通过定期任务或者触发条件来异步刷新缓存。

以上方案可以根据具体的业务需求和系统架构进行灵活调整和组合,以达到最佳的缓存刷新效果。

相关推荐
itwangyang5206 分钟前
AIDD-人工智能药物设计-StructGuy:破解蛋白变异预测的数据泄漏难题
人工智能
rongcj10 分钟前
智能眼镜成新经济现象,它是佩戴的AI,还是AI的容器?
人工智能
XiaoMu_00114 分钟前
DeepAnalyze:首个开源自动数据科学 Agentic LLM
人工智能
tap.AI18 分钟前
AI时代的云安全(一)新挑战与应对思考
人工智能
数据科学项目实践21 分钟前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:常用函数
人工智能·python·机器学习·数据挖掘·数据分析·pandas·数据可视化
yiersansiwu123d37 分钟前
AI大模型赋能消费升级:新机遇与新路径
人工智能
却道天凉_好个秋1 小时前
OpenCV(四十一):SIFT关键点检测
人工智能·opencv·计算机视觉
古城小栈1 小时前
K8s 1.30 新特性:AI 驱动的资源调度 深度解析
人工智能·容器·kubernetes
一瞬祈望1 小时前
PyTorch 图像分类完整项目模板实战
人工智能·pytorch·python·深度学习·分类
一马平川的大草原1 小时前
AI Agent常见问题和核心术语
人工智能·学习笔记·agent