分布式本地缓存刷新-日常笔记

分布式本地缓存刷新是指在分布式系统中,当数据发生变化时,需要将相关数据从本地缓存中移除或更新。以下是一个基本的分布式本地缓存刷新方案:

  1. 通知机制:当数据发生改变时,可以通过消息队列或者分布式事件总线来发送通知给相关节点,告知数据已经发生变化。

  2. 缓存标记:每个缓存项可以附加一个标记,表示该缓存项对应的数据是否发生过变化。当数据发生改变时,更新标记,并将消息发送给相关节点。每个节点在接收到消息后,根据标记判断是否需要将该缓存项移除或更新。

  3. 过期时间:在设置缓存项时,可以为每个缓存项设置一个过期时间。当数据发生变化时,可以将过期时间设置为一个较小的值,使缓存项在过期时间后自动失效,然后通过按需加载的方式重新获取最新数据。

  4. 一致性哈希算法:通过一致性哈希算法,将所有的缓存项和节点映射到一个哈希环上。当数据发生变化时,可以根据哈希环的路由规则,确定需要更新的缓存项所在的节点,然后将更新消息发送给该节点。

  5. 弱一致性方案:考虑到分布式系统的特点,可以采用弱一致性方案。即在数据发生变化后,不立即移除或更新所有的缓存项,而是通过定期任务或者触发条件来异步刷新缓存。

以上方案可以根据具体的业务需求和系统架构进行灵活调整和组合,以达到最佳的缓存刷新效果。

相关推荐
皓741几秒前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
985小水博一枚呀38 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan39 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀43 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路1 小时前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子1 小时前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别