【R语言】边缘概率密度图

边缘概率密度图是一种在多变量数据分析中常用的图形工具,用于显示每个单独变量的概率密度估计。它通常用于散点图的边缘,以便更好地理解单个变量的分布情况,同时保留了散点图的相关性信息。
在边缘概率密度图中,每个变量的概率密度估计通常通过直方图或核密度估计(KDE)进行计算。直方图将变量的值范围分成若干个区间,并统计每个区间中观察值的数量,然后将数量除以总观察值数量得到概率密度。而核密度估计则是通过在每个数据点周围放置核函数,并根据核函数的形状和宽度来估计概率密度。
边缘概率密度图通常与散点图一起显示,其中散点图展示了两个变量之间的关系,而边缘概率密度图则展示了每个变量的分布情况。这有助于发现变量之间的相关性以及每个变量的个体特征。如下图所示:

代码如下:

R 复制代码
library("ggExtra")
library("ggplot2")

piris <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point()
ggMarginal(piris, groupColour = TRUE, groupFill = TRUE)
  • piris <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) + geom_point():首先,创建了一个散点图 piris,其中 x 轴表示 Sepal.Length(花萼长度),y 轴表示 Sepal.Width(花萼宽度),并根据 Species(鸢尾花种类)变量进行颜色编码。

  • ggMarginal(piris, groupColour = TRUE, groupFill = TRUE):然后,使用 ggMarginal() 函数对 piris 图进行了包装,以创建带有边际图的散点图。参数 groupColour = TRUEgroupFill = TRUE 用于在边际图中反映颜色组。这意味着对于每个不同的鸢尾花种类,都会生成一个单独的边际图,以反映该组中的数据分布情况。

iris的数据集形式如下:

相关推荐
future141212 分钟前
C#学习日记
开发语言·学习·c#
king_harry28 分钟前
Java程序-OceanBase Connector/J 示例
开发语言
傻啦嘿哟1 小时前
Python 办公实战:用 python-docx 自动生成 Word 文档
开发语言·c#
翻滚吧键盘1 小时前
js代码09
开发语言·javascript·ecmascript
q567315231 小时前
R语言初学者爬虫简单模板
开发语言·爬虫·r语言·iphone
rzl022 小时前
java web5(黑马)
java·开发语言·前端
时序数据说2 小时前
为什么时序数据库IoTDB选择Java作为开发语言
java·大数据·开发语言·数据库·物联网·时序数据库·iotdb
jingling5552 小时前
面试版-前端开发核心知识
开发语言·前端·javascript·vue.js·面试·前端框架
m0_687399843 小时前
写一个Ununtu C++ 程序,调用ffmpeg API, 来判断一个数字电影的视频文件mxf 是不是Jpeg2000?
开发语言·c++·ffmpeg
爱上语文3 小时前
Redis基础(5):Redis的Java客户端
java·开发语言·数据库·redis·后端