【R语言】边缘概率密度图

边缘概率密度图是一种在多变量数据分析中常用的图形工具,用于显示每个单独变量的概率密度估计。它通常用于散点图的边缘,以便更好地理解单个变量的分布情况,同时保留了散点图的相关性信息。
在边缘概率密度图中,每个变量的概率密度估计通常通过直方图或核密度估计(KDE)进行计算。直方图将变量的值范围分成若干个区间,并统计每个区间中观察值的数量,然后将数量除以总观察值数量得到概率密度。而核密度估计则是通过在每个数据点周围放置核函数,并根据核函数的形状和宽度来估计概率密度。
边缘概率密度图通常与散点图一起显示,其中散点图展示了两个变量之间的关系,而边缘概率密度图则展示了每个变量的分布情况。这有助于发现变量之间的相关性以及每个变量的个体特征。如下图所示:

代码如下:

R 复制代码
library("ggExtra")
library("ggplot2")

piris <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point()
ggMarginal(piris, groupColour = TRUE, groupFill = TRUE)
  • piris <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) + geom_point():首先,创建了一个散点图 piris,其中 x 轴表示 Sepal.Length(花萼长度),y 轴表示 Sepal.Width(花萼宽度),并根据 Species(鸢尾花种类)变量进行颜色编码。

  • ggMarginal(piris, groupColour = TRUE, groupFill = TRUE):然后,使用 ggMarginal() 函数对 piris 图进行了包装,以创建带有边际图的散点图。参数 groupColour = TRUEgroupFill = TRUE 用于在边际图中反映颜色组。这意味着对于每个不同的鸢尾花种类,都会生成一个单独的边际图,以反映该组中的数据分布情况。

iris的数据集形式如下:

相关推荐
阿里嘎多学长8 分钟前
2026-02-16 GitHub 热点项目精选
开发语言·程序员·github·代码托管
啊吧怪不啊吧1 小时前
C++之基于正倒排索引的Boost搜索引擎项目usuallytool部分代码及详解
开发语言·c++·搜索引擎·项目
CeshirenTester2 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
发现你走远了2 小时前
Windows 下手动安装java JDK 21 并配置环境变量(详细记录)
java·开发语言·windows
游乐码2 小时前
c#类和对象
开发语言·c#
黎雁·泠崖3 小时前
Java常用类核心详解(一):Math 类超细讲解
java·开发语言
懒惰成性的3 小时前
12.Java的异常
java·开发语言
-To be number.wan3 小时前
Python数据分析:时间序列数据分析
开发语言·python·数据分析
前路不黑暗@4 小时前
Java项目:Java脚手架项目的通用组件的封装(六)
java·开发语言·spring
马士兵教育4 小时前
程序员简历如何编写才能凸显出差异化,才能拿到更多面试机会?
开发语言·后端·面试·职场和发展·架构