【R语言】边缘概率密度图

边缘概率密度图是一种在多变量数据分析中常用的图形工具,用于显示每个单独变量的概率密度估计。它通常用于散点图的边缘,以便更好地理解单个变量的分布情况,同时保留了散点图的相关性信息。
在边缘概率密度图中,每个变量的概率密度估计通常通过直方图或核密度估计(KDE)进行计算。直方图将变量的值范围分成若干个区间,并统计每个区间中观察值的数量,然后将数量除以总观察值数量得到概率密度。而核密度估计则是通过在每个数据点周围放置核函数,并根据核函数的形状和宽度来估计概率密度。
边缘概率密度图通常与散点图一起显示,其中散点图展示了两个变量之间的关系,而边缘概率密度图则展示了每个变量的分布情况。这有助于发现变量之间的相关性以及每个变量的个体特征。如下图所示:

代码如下:

R 复制代码
library("ggExtra")
library("ggplot2")

piris <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
  geom_point()
ggMarginal(piris, groupColour = TRUE, groupFill = TRUE)
  • piris <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) + geom_point():首先,创建了一个散点图 piris,其中 x 轴表示 Sepal.Length(花萼长度),y 轴表示 Sepal.Width(花萼宽度),并根据 Species(鸢尾花种类)变量进行颜色编码。

  • ggMarginal(piris, groupColour = TRUE, groupFill = TRUE):然后,使用 ggMarginal() 函数对 piris 图进行了包装,以创建带有边际图的散点图。参数 groupColour = TRUEgroupFill = TRUE 用于在边际图中反映颜色组。这意味着对于每个不同的鸢尾花种类,都会生成一个单独的边际图,以反映该组中的数据分布情况。

iris的数据集形式如下:

相关推荐
java干货17 分钟前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
_F_y17 分钟前
C语言重点知识总结(含KMP详细讲解)
c语言·开发语言
毕设源码-郭学长19 分钟前
【开题答辩全过程】以 基于python的二手房数据分析与可视化为例,包含答辩的问题和答案
开发语言·python·数据分析
无小道42 分钟前
Qt——常用控件
开发语言·qt
aini_lovee1 小时前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
R1nG8631 小时前
多线程安全设计 CANN Runtime关键数据结构的锁优化
开发语言·cann
初次见面我叫泰隆1 小时前
Qt——5、Qt系统相关
开发语言·qt·客户端开发
亓才孓1 小时前
[Class的应用]获取类的信息
java·开发语言
开开心心就好1 小时前
AI人声伴奏分离工具,离线提取伴奏K歌用
java·linux·开发语言·网络·人工智能·电脑·blender
Never_Satisfied1 小时前
在JavaScript / HTML中,关于querySelectorAll方法
开发语言·javascript·html