量化交易入门——从零开始搭建自己的量化交易系统

本篇作为个人学习过程记录,从零开始,入门量化交易。

量化交易系统模块介绍

一般的量化交易系统包含如下的功能模块参考

  1. 数据收集模块
    数据是量化交易的基础,因此数据收集模块是整个系统的核心之一。它负责从各种数据源收集市场数据,如股票、期货、外汇等。这些数据可能包括历史价格、成交量、财务信息等。数据的质量和准确性对整个系统的表现有着至关重要的影响。
  2. 数据清洗模块
    由于原始数据可能存在各种问题,如缺失值、异常值、重复数据等,因此需要进行数据清洗。这个模块负责对收集到的数据进行预处理,以确保数据的准确性和完整性。它通常包括数据筛选、异常值处理、缺失值填充等功能。
  3. 策略回测模块
    策略回测模块是量化交易系统的核心之一,它负责对历史数据进行回溯测试,以评估各种交易策略的表现。通过这个模块,投资者可以分析不同的策略参数和交易条件,从而找到最优的策略组合。它通常包括数据拟合、参数优化、风险评估等功能。
  4. 风险控制模块
    风险控制是量化交易中不可或缺的一环,这个模块负责对交易策略进行风险评估和控制。它通过设定止损点、仓位限制等措施来降低投资风险。在市场波动剧烈的情况下,风险控制模块可以及时发出警告或自动停止交易,以防止损失扩大。
  5. 指令执行模块
    指令执行模块是连接系统与市场的桥梁,它负责将交易策略转化为实际的交易指令。这个模块通常包括订单生成、订单执行和订单跟踪等功能。它需要与交易所、券商等机构进行实时通信,以确保交易指令能够准确、快速地执行。
  6. 交易模型构建模块
    交易模型构建模块是整个系统的起点,它负责设计和开发各种交易策略和算法。这个模块通常包括策略设计、算法开发、模型测试等功能。通过这个模块,投资者可以根据自己的需求和市场情况开发出适合自己的交易模型。
  7. 性能评估模块
    性能评估模块负责对整个量化交易系统的表现进行评估和监测。它通过收集和分析各种性能指标,如收益率、回撤率、夏普比率等,来评估各种交易策略的表现。此外,它还可以提供可视化的图表和报告,帮助投资者更好地了解系统表现和做出决策。

开源量化交易框架

PyBroker

一个基于python的量化交易框架,重要特性:

  • 策略回测模块:一个基于 NumPy 并通过 Numba 加速的超快回测引擎。
  • 指令执行模块:能轻松地在多个金融工具上创建和执行交易规则和模型。
  • 数据收集模块:可以轻松从 Alpaca, Yahoo Finance, AKShare, 或者从 自定义的数据源 来获取历史数据。
  • 交易模型构建模块:可以使用 Walkforward Analysis, 来训练和回测模型,该方法模拟了策略在实际交易中的表现。
  • 性能评估:使用随机 参考 来提供更准确的策略回测结果。
  • 加速:缓存已下载的数据、指标和模型来加速你的开发过程。
  • 加速:用并行计算来获得更高的性能。
相关推荐
热爱跑步的恒川38 分钟前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃3 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力5 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20215 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧36 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽6 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_6 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
SongYuLong的博客6 小时前
Air780E基于LuatOS编程开发
人工智能
Jina AI6 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-6 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理