8.18 机器学习-决策树(1)

决策树

1. 树模型本质

分类/回归:数据从根节点→叶子节点逐步决策,最终落在叶子节点。

2. 树的组成

根节点:第一个分裂的选择点。

非叶子节点:中间判断条件的过程。

叶子节点:最终决策的结果。

3. 训练 vs 测试

训练阶段:用训练集选择特征、切分节点。

测试阶段:按已建好的树路径直接进行预测。

4. 特征选择标准

熵:衡量数据不确定性(熵越低→数据不确定性越小)。

信息增益:特征分裂后熵的不确定减少的程度(增益越大→特征越优)。

5. 构造实例(以"14天打球"为例)

步骤:

  1. 计算原始熵(9打球/5不打球 → 熵=0.940)。

  2. 计算各特征(如Outlook)的条件熵和信息增益。

  3. 选增益最大的特征作为根节点,递归生成子树。

课堂练习:通过数据集构造决策树

1、总熵

E(D)=−k∑​plog2​(p​)

(属于鱼类=是):2个(1、2)

(属于鱼类=否):3个(3、4、5)

熵≈0.971

2、信息增益

:3(1、2、3)

熵:−(32​log2​32​+31​log2​31​)≈0.918

:2(4、5)

熵:0

信息增益=0.420

相关推荐
这张生成的图像能检测吗16 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
晚霞的不甘17 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw0519 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_9416233221 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛21 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI21 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus21 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声21 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API21 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr