8.18 机器学习-决策树(1)

决策树

1. 树模型本质

分类/回归:数据从根节点→叶子节点逐步决策,最终落在叶子节点。

2. 树的组成

根节点:第一个分裂的选择点。

非叶子节点:中间判断条件的过程。

叶子节点:最终决策的结果。

3. 训练 vs 测试

训练阶段:用训练集选择特征、切分节点。

测试阶段:按已建好的树路径直接进行预测。

4. 特征选择标准

熵:衡量数据不确定性(熵越低→数据不确定性越小)。

信息增益:特征分裂后熵的不确定减少的程度(增益越大→特征越优)。

5. 构造实例(以"14天打球"为例)

步骤:

  1. 计算原始熵(9打球/5不打球 → 熵=0.940)。

  2. 计算各特征(如Outlook)的条件熵和信息增益。

  3. 选增益最大的特征作为根节点,递归生成子树。

课堂练习:通过数据集构造决策树

1、总熵

E(D)=−k∑​plog2​(p​)

(属于鱼类=是):2个(1、2)

(属于鱼类=否):3个(3、4、5)

熵≈0.971

2、信息增益

:3(1、2、3)

熵:−(32​log2​32​+31​log2​31​)≈0.918

:2(4、5)

熵:0

信息增益=0.420

相关推荐
知秋一叶12318 分钟前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
春日见39 分钟前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
————A1 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR1 小时前
每周AI论文速递(251215-251219)
人工智能
weixin_409383122 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
长桥夜波2 小时前
【第二十四周】文献阅读-第一人称下的手势识别(1)
机器学习
JoannaJuanCV2 小时前
自动驾驶—CARLA仿真(22)manual_control_steeringwheel demo
人工智能·自动驾驶·pygame·carla
余俊晖2 小时前
使用Agent做本体匹配的架构设计
人工智能·语言模型·自然语言处理
图像生成小菜鸟2 小时前
Score Based diffusion model 数学推导
算法·机器学习·概率论
科士威传动2 小时前
方形滚珠导轨如何保障高速定位精度?
人工智能·科技·机器人·自动化·制造