XTuner笔记

为什么要微调:

  1. 模型不具备一些私人定制的知识

2。模型回答问题的套路你不满意。

对应衍生出来两种概念

增量预训练微调:
  • 使用场景:让基座模型学习到一些新知识,如某个垂类领域的常识
  • 训练数据:文章、书籍、代码等等
指令跟随微调:
  • 使用场景:让模型学会对话模板,根据人类指令进行对话
  • 训练数据:高质量的对话、问答数据
  1. 数据的一生
LoRA和QLoRA
LoRA总结
之前的fine-tune的方法
Adapters

方法:在模型的每一层之间添加可训练的小规模的网络,冻结原始网络权重,以此来减少fine-tune所需要的参数量。

应用:适用于那些希望在保持预训练模型结构不变的同时,对模型进行特定任务调整的场景。

缺点:引入推理延时
*

Prefix Tuning

方法:在模型输入部分添加一些可训练的前缀向量,然后将这些向量和数据一起送入模型,改变模型对单独数据的推理结果。

应用:适用于需要对模型进行轻量级微调的场景,特别是当模型非常大,而可用于训练的资源有限时。

缺点:鲁棒性不够好,模型的结果严重依赖于前缀的质量(举一个不是很恰当的例子就是:网络本身就没这些只是,你非得加前缀让他说,这怎么能说出来?)

简单来说LoRA就是通过引入两个低秩参数化更新矩阵来减少参数量,我的理解是把参数量降维(变少)
问题描述:

假设一个网络的所有参数W,维度是d * k,微调它的梯度∆W维度也是是d * k,也就是说W和∆W的参数量是一样的,这就给我们训练参数量太大的网络带来困难。同时,如果有不同的下游任务,则需要对每个下游任务都训练出一个这样的∆W,因此这种方式的fine-tune是非常昂贵的。
*

解决方案:

针对这个问题,文章提出将∆W进行低秩分解,分解成两个矩阵A(维度是d * r)、B(维度是r * k),其中r远远小于d和k的最小值,然后我们就可以计算∆W和AB的参数量:

应用:

需要对大模型所有参数进行微调,但不显著增加计算量的场景
*

优点:

训练成本降低,训练速度提升,针对不同任务只需训练针对不同任务的AB即可
*

缺点:

以精度换速度

QLoRA总结

在LoRA的基础上,添加了NF4的数据压缩(信息理论中最有的正太分布数据量化数据类型),进一步减少了显存和内存的消耗;然后添加一组可学习的LoRA权重,这些权重通过量化权重的反向传播梯度进行调整。

块状 k-bit 量化:既压缩了数据,又解决了异常值(我理解为噪声)对数据压缩的影响。我理解为:数据分布不是线性的,因此利用块量化(类似分治?)进行数据压缩。

优点:

使用NF4量化预训练权重,减少内存。计算梯度的时候再反量化?量化和反量化的或称会不会带来时间消耗?

双重量化:虽然NF4的数据的内存消耗很小,但是将量化常数也占用了内存。

相关推荐
亚马逊云开发者1 天前
Q CLI 助力合合信息实现 Aurora 的升级运营
人工智能
全栈胖叔叔-瓜州1 天前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
坚果派·白晓明1 天前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing1 天前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas96951 天前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
清风一徐1 天前
禅道从18.3升级到21.7.6版本
笔记
Jack___Xue1 天前
LangChain实战快速入门笔记(六)--LangChain使用之Agent
笔记·langchain·unix
大佐不会说日语~1 天前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
零度@1 天前
SQL 调优全解:从 20 秒到 200 ms 的 6 步实战笔记(附脚本)
数据库·笔记·sql
CeshirenTester1 天前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化