基于深度学习的人体关键点检测与姿态识别

文章目录

源码下载地址:
源码地址在视频简介中

深度学习人体关键点检测,姿态识别

界面效果:

界面代码:

python 复制代码
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from untitled import Ui_Form
import sys
import cv2 as cv
from PyQt5.QtCore import QCoreApplication
import numpy as np
from PyQt5 import QtCore,QtGui
from PIL import Image
from predicts import pp
import time
from PyQt5 import QtWidgets
import cv2
class My(QMainWindow,Ui_Form):
    def __init__(self):
        super(My,self).__init__()
        self.setupUi(self)
        self.setWindowTitle('人体姿态识别')
        self.use_palette()

        self.pushButton.clicked.connect(self.pic)

        self.pushButton_2.clicked.connect(self.pre)
        self.pushButton_3.clicked.connect(self.video)

        self._timer = QTimer(self)
        self._timer.timeout.connect(self.play)

    def video(self):
        self._timer.stop()
        v, videoType = QFileDialog.getOpenFileName(self,
                                                   "打开视频",
                                                   "",
                                                   " *.mp4;;*.avi;;All Files (*)")

        if v=='':
            return
        self.ved = cv2.VideoCapture(v)
        qq = self.ved.isOpened()
        if qq == False:
            msg_box = QMessageBox(QMessageBox.Warning, 'Warning', '请选择视频!')
            msg_box.exec_()
            return
        self._timer.stop()
        self._timer.start(1)
    def play(self):
        try:
            r, frame = self.ved.read()
            orial=self.cv_qt(frame)
            self.label.setPixmap(
                QPixmap.fromImage(orial).scaled(self.label.width(), self.label.height(), QtCore.Qt.KeepAspectRatio))


            self.out, zt = pp(frame)
            out = self.cv_qt(self.out)
            self.label_2.setPixmap(
                QPixmap.fromImage(out).scaled(self.label.width(), self.label.height(), QtCore.Qt.KeepAspectRatio))
            self.label_4.setText(zt)
        except:
            self._timer.stop()


    def pre(self):
        self._timer.stop()

        self.out,zt=pp(self.img[...,::-1])
        out=self.cv_qt(self.out)
        self.label_2.setPixmap(QPixmap.fromImage(out).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio))
        self.label_4.setText(zt)
    def pic(self):
        self._timer.stop()
        imgName, imgType = QFileDialog.getOpenFileName(self,
                                                       "打开图片",
                                                       "",
                                                       " *.png;;*.jpg;;*.jpeg;;*.bmp;;All Files (*)")
        if imgName=='':
            return
        #KeepAspectRatio
        png = QtGui.QPixmap(imgName).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio)  # 适应设计label时的大小
        self.label.setPixmap(png)

        self.img=Image.open(imgName)
        self.img=np.array(self.img)[...,:3]
    def cv_qt(self, src):
        #src必须为bgr格式图像
        #src必须为bgr格式图像
        #src必须为bgr格式图像
        if len(src.shape)==2:
            src=np.expand_dims(src,axis=-1)
            src=np.tile(src,(1,1,3))
            h, w, d = src.shape
        else:h, w, d = src.shape



        bytesperline = d * w
        # self.src=cv.cvtColor(self.src,cv.COLOR_BGR2RGB)
        qt_image = QImage(src.data, w, h, bytesperline, QImage.Format_RGB888).rgbSwapped()
        return qt_image
    #设置背景图片函数
    def use_palette(self):
        self.setWindowTitle("人体姿态识别")
        window_pale = QtGui.QPalette()
        window_pale.setBrush(self.backgroundRole(),
                             QtGui.QBrush(QtGui.QPixmap(r"./back.jpg")))
        self.setPalette(window_pale)


if __name__ == '__main__':
    QCoreApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling)
    app=QApplication(sys.argv)
    my=My()
    my.show()
    sys.exit(app.exec_())
相关推荐
callJJ2 分钟前
Spring AI ImageModel 完全指南:用 OpenAI DALL-E 生成图像
大数据·人工智能·spring·openai·springai·图像模型
铁蛋AI编程实战3 分钟前
2026 大模型推理框架测评:vLLM 0.5/TGI 2.0/TensorRT-LLM 1.8/DeepSpeed-MII 0.9 性能与成本防线对比
人工智能·机器学习·vllm
23遇见5 分钟前
CANN ops-nn 仓库高效开发指南:从入门到精通
人工智能
SAP工博科技5 分钟前
SAP 公有云 ERP 多工厂多生产线数据统一管理技术实现解析
大数据·运维·人工智能
芷栀夏7 分钟前
CANN ops-math:异构计算场景下基础数学算子的深度优化与硬件亲和设计解析
人工智能·cann
爱吃泡芙的小白白10 分钟前
深入解析CNN中的BN层:从稳定训练到前沿演进
人工智能·神经网络·cnn·梯度爆炸·bn·稳定模型
聆风吟º13 分钟前
CANN runtime 性能优化:异构计算下运行时组件的效率提升与资源利用策略
人工智能·深度学习·神经网络·cann
不写bug的程序媛15 分钟前
n8n用veo3生成视频一直报错获取不到图片链接问题
人工智能
一山秋叶15 分钟前
带分数正则的一致性蒸馏
人工智能·深度学习
一枕眠秋雨>o<16 分钟前
算子即战略:CANN ops-nn 如何重构大模型推理的内存与计算边界
人工智能·重构