基于深度学习的人体关键点检测与姿态识别

文章目录

源码下载地址:
源码地址在视频简介中

深度学习人体关键点检测,姿态识别

界面效果:

界面代码:

python 复制代码
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from untitled import Ui_Form
import sys
import cv2 as cv
from PyQt5.QtCore import QCoreApplication
import numpy as np
from PyQt5 import QtCore,QtGui
from PIL import Image
from predicts import pp
import time
from PyQt5 import QtWidgets
import cv2
class My(QMainWindow,Ui_Form):
    def __init__(self):
        super(My,self).__init__()
        self.setupUi(self)
        self.setWindowTitle('人体姿态识别')
        self.use_palette()

        self.pushButton.clicked.connect(self.pic)

        self.pushButton_2.clicked.connect(self.pre)
        self.pushButton_3.clicked.connect(self.video)

        self._timer = QTimer(self)
        self._timer.timeout.connect(self.play)

    def video(self):
        self._timer.stop()
        v, videoType = QFileDialog.getOpenFileName(self,
                                                   "打开视频",
                                                   "",
                                                   " *.mp4;;*.avi;;All Files (*)")

        if v=='':
            return
        self.ved = cv2.VideoCapture(v)
        qq = self.ved.isOpened()
        if qq == False:
            msg_box = QMessageBox(QMessageBox.Warning, 'Warning', '请选择视频!')
            msg_box.exec_()
            return
        self._timer.stop()
        self._timer.start(1)
    def play(self):
        try:
            r, frame = self.ved.read()
            orial=self.cv_qt(frame)
            self.label.setPixmap(
                QPixmap.fromImage(orial).scaled(self.label.width(), self.label.height(), QtCore.Qt.KeepAspectRatio))


            self.out, zt = pp(frame)
            out = self.cv_qt(self.out)
            self.label_2.setPixmap(
                QPixmap.fromImage(out).scaled(self.label.width(), self.label.height(), QtCore.Qt.KeepAspectRatio))
            self.label_4.setText(zt)
        except:
            self._timer.stop()


    def pre(self):
        self._timer.stop()

        self.out,zt=pp(self.img[...,::-1])
        out=self.cv_qt(self.out)
        self.label_2.setPixmap(QPixmap.fromImage(out).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio))
        self.label_4.setText(zt)
    def pic(self):
        self._timer.stop()
        imgName, imgType = QFileDialog.getOpenFileName(self,
                                                       "打开图片",
                                                       "",
                                                       " *.png;;*.jpg;;*.jpeg;;*.bmp;;All Files (*)")
        if imgName=='':
            return
        #KeepAspectRatio
        png = QtGui.QPixmap(imgName).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio)  # 适应设计label时的大小
        self.label.setPixmap(png)

        self.img=Image.open(imgName)
        self.img=np.array(self.img)[...,:3]
    def cv_qt(self, src):
        #src必须为bgr格式图像
        #src必须为bgr格式图像
        #src必须为bgr格式图像
        if len(src.shape)==2:
            src=np.expand_dims(src,axis=-1)
            src=np.tile(src,(1,1,3))
            h, w, d = src.shape
        else:h, w, d = src.shape



        bytesperline = d * w
        # self.src=cv.cvtColor(self.src,cv.COLOR_BGR2RGB)
        qt_image = QImage(src.data, w, h, bytesperline, QImage.Format_RGB888).rgbSwapped()
        return qt_image
    #设置背景图片函数
    def use_palette(self):
        self.setWindowTitle("人体姿态识别")
        window_pale = QtGui.QPalette()
        window_pale.setBrush(self.backgroundRole(),
                             QtGui.QBrush(QtGui.QPixmap(r"./back.jpg")))
        self.setPalette(window_pale)


if __name__ == '__main__':
    QCoreApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling)
    app=QApplication(sys.argv)
    my=My()
    my.show()
    sys.exit(app.exec_())
相关推荐
-Nemophilist-29 分钟前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富1 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算1 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
2 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_2 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习