基于深度学习的人体关键点检测与姿态识别

文章目录

源码下载地址:
源码地址在视频简介中

深度学习人体关键点检测,姿态识别

界面效果:

界面代码:

python 复制代码
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from untitled import Ui_Form
import sys
import cv2 as cv
from PyQt5.QtCore import QCoreApplication
import numpy as np
from PyQt5 import QtCore,QtGui
from PIL import Image
from predicts import pp
import time
from PyQt5 import QtWidgets
import cv2
class My(QMainWindow,Ui_Form):
    def __init__(self):
        super(My,self).__init__()
        self.setupUi(self)
        self.setWindowTitle('人体姿态识别')
        self.use_palette()

        self.pushButton.clicked.connect(self.pic)

        self.pushButton_2.clicked.connect(self.pre)
        self.pushButton_3.clicked.connect(self.video)

        self._timer = QTimer(self)
        self._timer.timeout.connect(self.play)

    def video(self):
        self._timer.stop()
        v, videoType = QFileDialog.getOpenFileName(self,
                                                   "打开视频",
                                                   "",
                                                   " *.mp4;;*.avi;;All Files (*)")

        if v=='':
            return
        self.ved = cv2.VideoCapture(v)
        qq = self.ved.isOpened()
        if qq == False:
            msg_box = QMessageBox(QMessageBox.Warning, 'Warning', '请选择视频!')
            msg_box.exec_()
            return
        self._timer.stop()
        self._timer.start(1)
    def play(self):
        try:
            r, frame = self.ved.read()
            orial=self.cv_qt(frame)
            self.label.setPixmap(
                QPixmap.fromImage(orial).scaled(self.label.width(), self.label.height(), QtCore.Qt.KeepAspectRatio))


            self.out, zt = pp(frame)
            out = self.cv_qt(self.out)
            self.label_2.setPixmap(
                QPixmap.fromImage(out).scaled(self.label.width(), self.label.height(), QtCore.Qt.KeepAspectRatio))
            self.label_4.setText(zt)
        except:
            self._timer.stop()


    def pre(self):
        self._timer.stop()

        self.out,zt=pp(self.img[...,::-1])
        out=self.cv_qt(self.out)
        self.label_2.setPixmap(QPixmap.fromImage(out).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio))
        self.label_4.setText(zt)
    def pic(self):
        self._timer.stop()
        imgName, imgType = QFileDialog.getOpenFileName(self,
                                                       "打开图片",
                                                       "",
                                                       " *.png;;*.jpg;;*.jpeg;;*.bmp;;All Files (*)")
        if imgName=='':
            return
        #KeepAspectRatio
        png = QtGui.QPixmap(imgName).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio)  # 适应设计label时的大小
        self.label.setPixmap(png)

        self.img=Image.open(imgName)
        self.img=np.array(self.img)[...,:3]
    def cv_qt(self, src):
        #src必须为bgr格式图像
        #src必须为bgr格式图像
        #src必须为bgr格式图像
        if len(src.shape)==2:
            src=np.expand_dims(src,axis=-1)
            src=np.tile(src,(1,1,3))
            h, w, d = src.shape
        else:h, w, d = src.shape



        bytesperline = d * w
        # self.src=cv.cvtColor(self.src,cv.COLOR_BGR2RGB)
        qt_image = QImage(src.data, w, h, bytesperline, QImage.Format_RGB888).rgbSwapped()
        return qt_image
    #设置背景图片函数
    def use_palette(self):
        self.setWindowTitle("人体姿态识别")
        window_pale = QtGui.QPalette()
        window_pale.setBrush(self.backgroundRole(),
                             QtGui.QBrush(QtGui.QPixmap(r"./back.jpg")))
        self.setPalette(window_pale)


if __name__ == '__main__':
    QCoreApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling)
    app=QApplication(sys.argv)
    my=My()
    my.show()
    sys.exit(app.exec_())
相关推荐
互联网全栈架构29 分钟前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
m0_4652157930 分钟前
大语言模型解析
人工智能·语言模型·自然语言处理
张较瘦_1 小时前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q2 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910133 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
token-go3 小时前
[特殊字符] 革命性AI提示词优化平台正式开源!
人工智能·开源
cooldream20093 小时前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1187 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn8 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer8 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人