基于深度学习的人体关键点检测与姿态识别

文章目录

源码下载地址:
源码地址在视频简介中

深度学习人体关键点检测,姿态识别

界面效果:

界面代码:

python 复制代码
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from untitled import Ui_Form
import sys
import cv2 as cv
from PyQt5.QtCore import QCoreApplication
import numpy as np
from PyQt5 import QtCore,QtGui
from PIL import Image
from predicts import pp
import time
from PyQt5 import QtWidgets
import cv2
class My(QMainWindow,Ui_Form):
    def __init__(self):
        super(My,self).__init__()
        self.setupUi(self)
        self.setWindowTitle('人体姿态识别')
        self.use_palette()

        self.pushButton.clicked.connect(self.pic)

        self.pushButton_2.clicked.connect(self.pre)
        self.pushButton_3.clicked.connect(self.video)

        self._timer = QTimer(self)
        self._timer.timeout.connect(self.play)

    def video(self):
        self._timer.stop()
        v, videoType = QFileDialog.getOpenFileName(self,
                                                   "打开视频",
                                                   "",
                                                   " *.mp4;;*.avi;;All Files (*)")

        if v=='':
            return
        self.ved = cv2.VideoCapture(v)
        qq = self.ved.isOpened()
        if qq == False:
            msg_box = QMessageBox(QMessageBox.Warning, 'Warning', '请选择视频!')
            msg_box.exec_()
            return
        self._timer.stop()
        self._timer.start(1)
    def play(self):
        try:
            r, frame = self.ved.read()
            orial=self.cv_qt(frame)
            self.label.setPixmap(
                QPixmap.fromImage(orial).scaled(self.label.width(), self.label.height(), QtCore.Qt.KeepAspectRatio))


            self.out, zt = pp(frame)
            out = self.cv_qt(self.out)
            self.label_2.setPixmap(
                QPixmap.fromImage(out).scaled(self.label.width(), self.label.height(), QtCore.Qt.KeepAspectRatio))
            self.label_4.setText(zt)
        except:
            self._timer.stop()


    def pre(self):
        self._timer.stop()

        self.out,zt=pp(self.img[...,::-1])
        out=self.cv_qt(self.out)
        self.label_2.setPixmap(QPixmap.fromImage(out).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio))
        self.label_4.setText(zt)
    def pic(self):
        self._timer.stop()
        imgName, imgType = QFileDialog.getOpenFileName(self,
                                                       "打开图片",
                                                       "",
                                                       " *.png;;*.jpg;;*.jpeg;;*.bmp;;All Files (*)")
        if imgName=='':
            return
        #KeepAspectRatio
        png = QtGui.QPixmap(imgName).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio)  # 适应设计label时的大小
        self.label.setPixmap(png)

        self.img=Image.open(imgName)
        self.img=np.array(self.img)[...,:3]
    def cv_qt(self, src):
        #src必须为bgr格式图像
        #src必须为bgr格式图像
        #src必须为bgr格式图像
        if len(src.shape)==2:
            src=np.expand_dims(src,axis=-1)
            src=np.tile(src,(1,1,3))
            h, w, d = src.shape
        else:h, w, d = src.shape



        bytesperline = d * w
        # self.src=cv.cvtColor(self.src,cv.COLOR_BGR2RGB)
        qt_image = QImage(src.data, w, h, bytesperline, QImage.Format_RGB888).rgbSwapped()
        return qt_image
    #设置背景图片函数
    def use_palette(self):
        self.setWindowTitle("人体姿态识别")
        window_pale = QtGui.QPalette()
        window_pale.setBrush(self.backgroundRole(),
                             QtGui.QBrush(QtGui.QPixmap(r"./back.jpg")))
        self.setPalette(window_pale)


if __name__ == '__main__':
    QCoreApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling)
    app=QApplication(sys.argv)
    my=My()
    my.show()
    sys.exit(app.exec_())
相关推荐
九章云极AladdinEdu1 小时前
GPU与NPU异构计算任务划分算法研究:基于强化学习的Transformer负载均衡实践
java·开发语言·人工智能·深度学习·测试工具·负载均衡·transformer
量子-Alex1 小时前
【目标检测】RT-DETR
人工智能·目标检测·计算机视觉
2201_754918411 小时前
OpenCV 图像透视变换详解
人工智能·opencv·计算机视觉
天上路人1 小时前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
羽星_s1 小时前
文本分类任务Qwen3-0.6B与Bert:实验见解
人工智能·bert·文本分类·ai大模型·qwen3
摸鱼仙人~1 小时前
TensorFlow/Keras实现知识蒸馏案例
人工智能·tensorflow·keras
浊酒南街1 小时前
TensorFlow之微分求导
人工智能·python·tensorflow
羽凌寒1 小时前
曝光融合(Exposure Fusion)
图像处理·人工智能·计算机视觉
lucky_lyovo1 小时前
机器学习-特征工程
人工智能·机器学习
alpszero2 小时前
YOLO11解决方案之对象裁剪探索
人工智能·python·计算机视觉·yolo11