langchain 基于ES的数据向量化存储和检索

中文向量化模型候选:

1、sentence-transformers/all-MiniLM-L6-v2 向量维度为384维,支持多种语言。

2、BAAI/bge-m3

3、多语言模型:BAAI/bge-m3 支持的输入长度<=8192

from langchain_community.embeddings import HuggingFaceBgeEmbeddings

model_name = "sentence-transformers/all-MiniLM-L6-v2"

model_kwargs = {"device": "cpu"}

encode_kwargs = {"normalize_embeddings": True}

embeddings = HuggingFaceBgeEmbeddings(

model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs

)

1·、存储源为elasticsearch

from typing import Any, Dict, Iterable

from elasticsearch import Elasticsearch

from elasticsearch.helpers import bulk

from langchain.embeddings import DeterministicFakeEmbedding

from langchain_core.documents import Document

from langchain_core.embeddings import Embeddings

from langchain_elasticsearch import ElasticsearchRetriever

es_url = "http://user:password@localhost:9200"

es_client = Elasticsearch(hosts=[es_url])

es_client.info()

index_name = "test-langchain-retriever"

text_field = "text"

dense_vector_field = "fake_embedding"

num_characters_field = "num_characters"

texts = [

"foo",

"bar",

"world",

"hello world",

"hello",

"foo bar",

"bla bla foo",

]

def create_index(

es_client: Elasticsearch,

index_name: str,

text_field: str,

dense_vector_field: str,

num_characters_field: str,

):

es_client.indices.create(

index=index_name,

mappings={

"properties": {

text_field: {"type": "text"},

dense_vector_field: {"type": "dense_vector"},

num_characters_field: {"type": "integer"},

}

},

)

def index_data(

es_client: Elasticsearch,

index_name: str,

text_field: str,

dense_vector_field: str,

embeddings: Embeddings,

texts: Iterable[str],

refresh: bool = True,

) -> None:

create_index(

es_client, index_name, text_field, dense_vector_field, num_characters_field

)

vectors = embeddings.embed_documents(list(texts))

requests = [

{

"_op_type": "index",

"_index": index_name,

"_id": i,

text_field: text,

dense_vector_field: vector,

num_characters_field: len(text),

}

for i, (text, vector) in enumerate(zip(texts, vectors))

]

bulk(es_client, requests)

if refresh:

es_client.indices.refresh(index=index_name)

index_data(es_client, index_name, text_field, dense_vector_field, embeddings, texts)

2、elasticsearch 向量检索:

es_url = "http://user:password@localhost:9200"

index_name = "test-langchain-retriever"

text_field = "text"

dense_vector_field = "fake_embedding"

num_characters_field = "num_characters"

def gen_dsl(search_query: str) -> Dict:

vector = embeddings.embed_query(search_query) # same embeddings as for indexing

return {

"knn": {

"field": dense_vector_field,

"query_vector": vector,

"k": 5,

"num_candidates": 10,

}

}

vector_retriever = ElasticsearchRetriever.from_es_params(

index_name=index_name,

body_func=vector_query,

content_field=text_field,

url=es_url,

)

vector_retriever.invoke("foo")

说明:简单的向量检索,耗时比较长。

原因:1、直接对全局使用了余弦相似度计算。(cos),未做任何优化

2、返回数据将向量内容全部返回

相关推荐
快乐的钢镚子9 分钟前
【RAG实战】中医医疗问答系统
langchain·llama
AI大模型学徒1 小时前
大模型应用开发(九)_LangChain提示词模板
chatgpt·langchain·大模型·deepseek·提示词模板
W_Meng_H2 小时前
LangChain Agent - 通义千问+工具 (流式输出)
langchain
Wilber的技术分享5 小时前
【大模型实战笔记 7】RAG技术:从原理到实战——基于Streamlit的智能文档问答系统
人工智能·笔记·langchain·llm·问答系统·rag·知识库检索
工藤学编程7 小时前
零基础学AI大模型之新版LangChain向量数据库VectorStore设计全解析
数据库·人工智能·langchain
韩曙亮1 天前
【AI 大模型】LangChain 框架 ① ( LangChain 简介 | LangChain 模块 | LangChain 文档 )
人工智能·ai·langchain·llm·大语言模型·prompts·agents
呲溜滑_1 天前
langchain(node.js) 实际应用==》md文件检索
langchain·node.js
学Linux的语莫1 天前
LangGraph知识
运维·langchain
core5121 天前
基于 LangChain + 通义千问打造ReAct私募基金智能问答助手
ai·langchain·大模型·qwen·通义·千问·助手
boboo_2000_02 天前
基于SpringBoot+Langchain4j的AI机票预订系统
spring cloud·微服务·云原生·langchain