langchain 基于ES的数据向量化存储和检索

中文向量化模型候选:

1、sentence-transformers/all-MiniLM-L6-v2 向量维度为384维,支持多种语言。

2、BAAI/bge-m3

3、多语言模型:BAAI/bge-m3 支持的输入长度<=8192

from langchain_community.embeddings import HuggingFaceBgeEmbeddings

model_name = "sentence-transformers/all-MiniLM-L6-v2"

model_kwargs = {"device": "cpu"}

encode_kwargs = {"normalize_embeddings": True}

embeddings = HuggingFaceBgeEmbeddings(

model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs

)

1·、存储源为elasticsearch

from typing import Any, Dict, Iterable

from elasticsearch import Elasticsearch

from elasticsearch.helpers import bulk

from langchain.embeddings import DeterministicFakeEmbedding

from langchain_core.documents import Document

from langchain_core.embeddings import Embeddings

from langchain_elasticsearch import ElasticsearchRetriever

es_url = "http://user:password@localhost:9200"

es_client = Elasticsearch(hosts=[es_url])

es_client.info()

index_name = "test-langchain-retriever"

text_field = "text"

dense_vector_field = "fake_embedding"

num_characters_field = "num_characters"

texts = [

"foo",

"bar",

"world",

"hello world",

"hello",

"foo bar",

"bla bla foo",

]

def create_index(

es_client: Elasticsearch,

index_name: str,

text_field: str,

dense_vector_field: str,

num_characters_field: str,

):

es_client.indices.create(

index=index_name,

mappings={

"properties": {

text_field: {"type": "text"},

dense_vector_field: {"type": "dense_vector"},

num_characters_field: {"type": "integer"},

}

},

)

def index_data(

es_client: Elasticsearch,

index_name: str,

text_field: str,

dense_vector_field: str,

embeddings: Embeddings,

texts: Iterable[str],

refresh: bool = True,

) -> None:

create_index(

es_client, index_name, text_field, dense_vector_field, num_characters_field

)

vectors = embeddings.embed_documents(list(texts))

requests = [

{

"_op_type": "index",

"_index": index_name,

"_id": i,

text_field: text,

dense_vector_field: vector,

num_characters_field: len(text),

}

for i, (text, vector) in enumerate(zip(texts, vectors))

]

bulk(es_client, requests)

if refresh:

es_client.indices.refresh(index=index_name)

index_data(es_client, index_name, text_field, dense_vector_field, embeddings, texts)

2、elasticsearch 向量检索:

es_url = "http://user:password@localhost:9200"

index_name = "test-langchain-retriever"

text_field = "text"

dense_vector_field = "fake_embedding"

num_characters_field = "num_characters"

def gen_dsl(search_query: str) -> Dict:

vector = embeddings.embed_query(search_query) # same embeddings as for indexing

return {

"knn": {

"field": dense_vector_field,

"query_vector": vector,

"k": 5,

"num_candidates": 10,

}

}

vector_retriever = ElasticsearchRetriever.from_es_params(

index_name=index_name,

body_func=vector_query,

content_field=text_field,

url=es_url,

)

vector_retriever.invoke("foo")

说明:简单的向量检索,耗时比较长。

原因:1、直接对全局使用了余弦相似度计算。(cos),未做任何优化

2、返回数据将向量内容全部返回

相关推荐
CodeLinghu15 小时前
《LLM大语言模型+RAG实战+Langchain+ChatGLM-4+Transformer》
语言模型·langchain·transformer
CodeCodeBond2 天前
RAG:实现基于本地知识库结合大模型生成(LangChain4j快速入门#1)
java·后端·ai·语言模型·langchain·个人开发·ai编程
花千树-0103 天前
LangChain教程 - RAG - PDF解析
langchain·pdf
梦想画家4 天前
LangChain:使用表达式语言优化提示词链
langchain·提示词链
橙意满满的西瓜大侠5 天前
langchain基础(二)
langchain
uncle_ll7 天前
ChatGPT大模型极简应用开发-CH5-使用 LangChain 框架和插件增强 LLM 的功能
gpt·chatgpt·langchain·llm·rag
码--到成功7 天前
langchain 入门(一)
langchain
爱吃面的猫9 天前
Langchain+文心一言调用
langchain·文心一言
爱吃面的猫10 天前
Langchain+讯飞星火大模型Spark Max调用
langchain
大模型铲屎官12 天前
玩转 LangChain:从文档加载到高效问答系统构建的全程实战
人工智能·python·ai·langchain·nlp·文档加载·问答系统构建