【bash】笔记

在Shell脚本中,-e 是一个测试运算符,用于检查给定的文件或目录是否存在。

| 是通道符,会把前面的输出给后面作为输入。

sudo tee命令在这里用于同时更新文件和在终端显示输出(尽管 > /dev/null 将标准输出重定向到黑洞,即不显示任何内容)。这样做的目的是在不影响用户交互的情况下安全地更新系统设置。


在Shell脚本中,$0是一个特殊变量,它代表脚本本身的文件名(包含路径)。当脚本被执行时,$0就保存了这个脚本的名字。这在脚本内部需要引用脚本名称或者路径时非常有用,比如在打印日志、错误信息或者像上面提到的帮助信息中显示脚本名。

在Shell脚本中,$#是一个特殊变量,表示传递给脚本或函数的参数个数。

-gt 是大于(greater than)的比较运算符。

在Shell脚本中,$1是一个特殊变量,它代表传递给脚本或函数的第一个命令行参数。当你运行一个脚本并提供一些参数,$1将存储第一个参数的值,$2存储第二个参数,以此类推,$0存储脚本本身的名字。

-z 后面么有就是真。

所以,如果${DOCKER_REPO}没有被设置或者值为空,脚本将把DOCKER_REPO设置为apolloauto/apollo。这确保了在没有指定Docker镜像仓库的情况下,有一个默认的仓库值可供使用。

在Docker容器内使用CUDA,你需要确保几个关键步骤都已完成:

  1. 使用支持CUDA的Docker镜像 :首先,你需要一个包含CUDA和NVIDIA驱动的Docker镜像。NVIDIA提供了官方的CUDA镜像,这些镜像是基于不同的基础镜像(如Ubuntu、Debian等)构建的,并且已经包含了CUDA和NVIDIA驱动。你可以通过docker pull命令从Docker Hub拉取这些镜像。

  2. 启用NVIDIA Docker插件:NVIDIA Docker工具包允许你在Docker中充分利用NVIDIA GPU。你需要安装NVIDIA Container Toolkit,它提供了运行CUDA容器所需的驱动和库。

  3. 设置环境变量 :在运行Docker容器时,可以通过-e选项设置环境变量,比如CUDA_VISIBLE_DEVICES来指定哪个GPU可以被容器看到和使用。

  4. 挂载CUDA库 :如果需要访问主机上的CUDA安装,可以通过-v选项挂载CUDA库的路径,如/usr/local/cuda,这样容器内可以访问到这些库。不过,通常情况下,如果你使用的是带有CUDA的预配置镜像,这些库应该已经包含在镜像内。

一个基本的Docker运行命令可能如下所示:

  • --gpus all 允许容器访问所有的GPU。
  • -e CUDA_VISIBLE_DEVICES=0 设置环境变量,指定GPU 0 可见。
  • -v /usr/local/cuda:/usr/local/cuda 挂载主机上的CUDA路径到容器内。

docker run

--gpus all

-e CUDA_VISIBLE_DEVICES=0

-v /usr/local/cuda:/usr/local/cuda -it nvidia/cuda:11.0-base bash


-v /usr/local/cuda:/usr/local/cuda

相关推荐
__雨夜星辰__3 小时前
Linux 学习笔记__Day2
linux·服务器·笔记·学习·centos 7
Fhd-学习笔记9 小时前
《大语言模型》综述学习笔记
笔记·学习·语言模型
简知圈10 小时前
【04-自己画P封装,并添加已有3D封装】
笔记·stm32·单片机·学习·pcb工艺
YxVoyager10 小时前
GAMES101学习笔记(五):Texture 纹理(纹理映射、重心坐标、纹理贴图)
笔记·学习·图形渲染
Buring_learn11 小时前
代理模式 -- 学习笔记
笔记·学习·代理模式
池佳齐11 小时前
《AI大模型开发笔记》DeepSeek技术创新点
人工智能·笔记
圆圆滚滚小企鹅。12 小时前
刷题记录 HOT100回溯算法-6:79. 单词搜索
笔记·python·算法·leetcode
大邳草民12 小时前
计算机网络的基础设备
笔记·计算机网络
霸王蟹13 小时前
文本复制兼容方案最佳实现落地。
前端·javascript·vue.js·笔记·学习
dal118网工任子仪14 小时前
86.(2)攻防世界 WEB PHP2
笔记·学习