第四届上海理工大学程序设计全国挑战赛 J.上学 题解 DFS 容斥

上学

题目描述

usst 小学里有 n 名学生,他们分别居住在 n 个地点,第 i 名学生居住在第 i 个地点,这些地点由 n−1 条双向道路连接,保证任意两个地点之间可以通过若干条双向道路抵达。学校则位于另外的第 0 个地点,第 0 个地点与第 1 个地点之间有另外一条双向道路链接。

最近学校开始启用校车来接学生上学,每一辆校车上都可以坐无限个学生,且每辆校车在一天内不会重复经过一条道路,校车终点始终为学校。每一位学生一天内只能乘坐一辆校车,且只能在自己居住的节点处上车,在学校下车。为了节省资金,学校会在保证每位学生都能坐上校车的前提下,安排最少数量的校车,每天早上从某些地点出发,并经过若干道路和地点最终抵达学校。第 x 位学生可以自由选择一辆经过第 x 个地点的校车,搭乘它到达学校。

现在学校想要从 n 个学生中选出 3 人参加某个比赛,但是学校不希望这 3 人之间太过 "熟悉",请问一共有多少种不同的选人方案。

如果一种选择方案中, 3 个人可能在同一天里乘坐上同一辆校车,那就称这 3 个人之间太过 "熟悉"。

对于任意两个方案,如果存在一名学生在一个方案中且不在另一个方案中,那么就认为这两种方案不同。

输入描述

输入第 1 行包含 1 个正整数 n ,代表学生数量和学生居住的地点数量。( 3 ≤ n ≤ 2 × 1 0 5 3≤n≤2×10^5 3≤n≤2×105)

接下来 n−1 行每行有 2 个正整数 u, v ,代表第 u 个地点与第 v 个地点之间有一条双向道路。( 1 ≤ u , v ≤ n 1≤u,v≤n 1≤u,v≤n)

输出描述

输出一行,一个整数,代表选人方案数量。

样例输入 #1

5
1 2
2 3
3 4
4 5

样例输出 #1

0

样例输入 #2

5
1 2
2 3
2 4
1 5

样例输出 #2

8

原题

牛客------传送门

思路

根据题目描述可知,学校所选择的校车的路线是每个由叶子节点指向根节点(即节点1)的路径。题目目的是求出从 n 个学生中选择 3 个学生,保证 3 个学生不在同一条由叶子节点指向根节点(即节点1)的路径中的方案数。那么可以采用容斥原理,用不考虑 3 个学生在一条路径上的总的方案数减去 3 个学生在一条路径上的方案数。

求解示例如下:

对于上图所示的树,存在三条从叶子节点到根节点的路径,即 4-1,6-1,7-1,也就是三辆校车行驶的路线。首先,总的方案数为C(n,3)。而 3 个学生在一条路径上的方案数求解如下:C(4,3)+C(5,3)+C(5,3)-C(4,3)-C(3,3)。意思是4-1,6-1,7-1的三条路径中各自分别选取 3 个学生,但是存在重复选取5-1路径和3-1路径的情况。所以我们需要去重,即因为 5 节点下面有两条支链,所以要减去5-1路径的方案数乘以2-1(因为有两条支链,重复求了一次,所以2-1表示多求的数量)即减去C(4,3)。同理,还需要减去3-1路径的方案数即C(3,3)。

代码

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn = 2e5 + 6;
vector<int> e[maxn];        // 邻接表存边
vector<pair<int, int>> num; // num.first为路径上的节点个数,num.second为该路径需要计算多少次

void dfs(int p, int fa, int depth)
{
    if (p != 1 && e[p].size() <= 1) // 找到叶子节点
    {
        if (depth >= 3)
        {
            num.push_back({depth, 1});
        }
        return;
    }
    int child_num = 0;                    // 支链数量,即孩子数量
    for (int i = 0; i < e[p].size(); i++) // 树的递归遍历
    {
        int v = e[p][i];
        if (v != fa)
        {
            dfs(v, p, depth + 1);
            child_num++;
        }
    }
    if (depth >= 3) // 去重
    {
        num.push_back({-depth, child_num - 1}); // 加入num数组数指定为-depth,为的是做个标记
    }
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);

    ll n;
    cin >> n;
    for (int i = 1; i < n; i++)
    {
        int u, v;
        cin >> u >> v;
        // 存无向边
        e[u].push_back(v);
        e[v].push_back(u);
    }
    dfs(1, 0, 1);
    // 先计算总方案数C(n,3)
    ll ans = n * (n - 1) * (n - 2) / 6;
    for (int i = 0; i < num.size(); i++)
    {
        ll x = num[i].first;
        if (x > 0) // 若为正数,表示这是叶子节点到根节点的路径中选取学生的方案数
            ans -= x * (x - 1) * (x - 2) / 6;
        else // 标记为负数,表示这是要去重的路径中选取学生的方案数
        {
            x = -x;
            ans += x * (x - 1) * (x - 2) / 6 * (ll)num[i].second;
        }
    }
    cout << ans;

    return 0;
}
相关推荐
TENET信条4 分钟前
代码随想录 day52 第十一章 图论part03
图论
charlie1145141916 分钟前
C++ STL CookBook
开发语言·c++·stl·c++20
Lenyiin13 分钟前
01.02、判定是否互为字符重排
算法·leetcode
小林熬夜学编程17 分钟前
【Linux网络编程】第十四弹---构建功能丰富的HTTP服务器:从状态码处理到服务函数扩展
linux·运维·服务器·c语言·网络·c++·http
倔强的石头10628 分钟前
【C++指南】类和对象(九):内部类
开发语言·c++
鸽鸽程序猿28 分钟前
【算法】【优选算法】宽搜(BFS)中队列的使用
算法·宽度优先·队列
Jackey_Song_Odd29 分钟前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
Watermelo61732 分钟前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
乐之者v38 分钟前
leetCode43.字符串相乘
java·数据结构·算法
A懿轩A2 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组