YOLO的版本有哪些,以及功能差异?

YOLO(You Only Look Once)是一个流行的目标检测算法系列,自2016年以来已经发展出多个版本,每个版本都在性能、速度和准确性上有所改进。以下是YOLO的主要版本及其功能差异的概述:

  1. YOLOv1:提出了一个统一的模型,可以在单次传递中直接从完整图像预测边界框和类别概率。

  2. YOLOv2(也称为Darknet-19):通过使用批量归一化、多尺度锚定框以及其他优化,对原始版本进行了改进。

  3. YOLOv3:引入了Darknet-53作为新的特征提取器,并添加了多尺度预测,改进了对小物体的检测。

  4. YOLOv4:结合了其他对象检测器和分割模型的想法,在保持快速推理的同时提高准确性。

  5. YOLOv5:在PyTorch中完全重写了YOLOv4,并引入了CSPDarknet53等新特性,优化了性能和易用性。

  6. YOLOv6:继续优化架构和训练过程,引入了无锚点的检测器和新的损失函数等创新。

  7. YOLOv7:相较于YOLOv5,在参数量上有所减少,特别是YOLOv7-tiny版本,致力于提高推理速度。

  8. YOLOv8:在准确性方面胜过YOLOv5,特别是在检测小物体方面表现出色,并解决了YOLOv5的一些限制。

  9. YOLOv9:引入了通用高效层聚合网络(GELAN)和可编程梯度信息(PGI),专注于提高效率,以便在更广泛的设备上实现实时性能。

  10. PP-YOLO:并非YOLO主线版本,但值得一提,它使用ResNet50-vd作为骨干网,并引入了多项优化,如DropBlock、IoU预测分支等,以提高性能。

  11. Scaled-YOLOv4:提供了扩大和缩小的技术,以适应不同的计算能力和速度需求。

  12. YOLOX:以YOLOv3为起点,引入了无锚结构、多阳性、解耦头等改进。

  13. YOLOR:采用了多任务学习方法,旨在为各种任务创建一个单一的模型。

  14. PP-YOLOE:使用了无锚的架构,并引入了高效任务排列头(ET-head)和任务对齐学习(TAL)。

每个版本都根据当时的技术需求和挑战进行了特定的优化。例如,YOLOv3引入了多尺度预测来改善对小目标的检测,而YOLOv5则完全重写,使用了PyTorch框架,提高了模型的可用性和性能。YOLOv9则进一步推动了目标检测的效率和性能,使其更适合在资源受限的设备上运行。随着计算机视觉和深度学习领域的不断发展,YOLO系列仍在持续进化中。

相关推荐
2501_941329722 小时前
改进YOLOv8-seg-act__鸡只计数检测实战
yolo
weixin_395448913 小时前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo
王锋(oxwangfeng)9 小时前
YOLOWorld 实现开集障碍物检测
yolo
喵叔哟9 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
2501_941333101 天前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
xsc-xyc1 天前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
张3蜂1 天前
我希望做的是识别身份证正反面,我需要标注多少张图片?
yolo
AAD555888991 天前
YOLOv8-MAN-Faster电容器缺陷检测:七类组件识别与分类系统
yolo·分类·数据挖掘
AI浩1 天前
YOLO-IOD:面向实时增量目标检测
yolo·目标检测·目标跟踪
wfeqhfxz25887821 天前
YOLOv8-BiFPN鸟巢目标检测与识别实战教程
yolo·目标检测·目标跟踪