Backend - 数据分析 Numpy

目录

一、作用

二、基础环境

(一)执行虚拟环境的终端命令

(二)代码中导包

三、数组操作

(一)创建数组

[1. 创建一维数组](#1. 创建一维数组)

(1)基本建立

(2)建立后,值类型统一

[2. 建立二维数组](#2. 建立二维数组)

(二)数组取值

[1. 取一维数组的值](#1. 取一维数组的值)

(1)取单个值

(2)取范围值

[2. 取得二维数组的值](#2. 取得二维数组的值)

(1)取某个值

(2)取某列

(3)取某行

(三)查看数据类型

(四)向量化运算

(五)聚合计算

[1. 常用](#1. 常用)

[2. 指定轴向](#2. 指定轴向)


一、作用

数值计算库。

二、基础环境

(一)执行虚拟环境的终端命令

bash 复制代码
pip install numpy

(二)代码中导包

python 复制代码
import numpy as np

三、数组操作

(一)创建数组

1. 创建一维数组

(1)基本建立
python 复制代码
a = [1,2,3,4]
b = np.array(a)  # [1 2 3 4]
(2)建立后,值类型统一
python 复制代码
a = [1,'aa',3,4]
b = np.array(a)  # ['1' 'aa' '3' '4']

2. 建立二维数组

python 复制代码
a = [['aa',2], [3,4]]
b = np.array(a) 

b 结果是:

bash 复制代码
[['aa' '2']
 ['3' '4']]

(二)数组取值

1. 取一维数组的值

(1)取单个值
python 复制代码
a = np.array([1,2,3,4,5,6,7])
b =a[0] # 1
(2)取范围值
python 复制代码
a = np.array([1,2,3,4,5,6,7])
b2 = a[2:5]  # [3 4 5]

2. 取得二维数组的值

(1)取某个值
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
c = b[0,1] 
print(c)  # 2
(2)取某列
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
d = b[:, 0] 
print(d)  # [1,3]
(3)取某行
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
e = b[1, :]
print(e)  # [3,4]

(三)查看数据类型

python 复制代码
a = [1,2,3,4]
b = np.array(a)   # [1 2 3 4]
c = b.dtype  # int32

(四)向量化运算

python 复制代码
a = [1,2,3,4]
b = np.array(a)   # [1 2 3 4]
c = b*3   # [3 6 9 12]
d = b+b   # [2 4 6 8]

(五)聚合计算

1. 常用

python 复制代码
import numpy as np
np.sum() 计算总和
np.any() 是否存在元素为真
np.all() 所有元素是否为真
np.prod() 所有元素乘积
np.mean() 平均值
np.median() 中位数
np.std() 标准差
np.var() 方差
np.power() 幂运算
np.sqrt() 开方
np.argmin() 最小值的索引
np.argmax() 最大值的索引
np.inf 无穷大
np.exp(10) 以e为底的指数
np.log(10) 对数

举例:

python 复制代码
a = np.array([0,1,2,3,4])
print(np.sum(a)) # 10
print(np.any(a)) # True
print(np.all(a)) # False
print(np.prod(a)) # 0
print(np.mean(a)) # 2.0
print(np.median(a)) # 2.0
print(np.std(a)) # 1.4142135623730951
print(np.var(a)) # 2.0
print(np.power(a, 2)) # [ 0  1  4  9 16]
print(np.sqrt(a)) # [0.  1.  1.41421356  1.73205081  2. ]
print(np.argmin(a)) # 0
print(np.argmax(a)) # 4
print(np.inf) # inf
print(np.exp(10)) # 22026.465794806718
print(np.log(10)) # 2.302585092994046

2. 指定轴向

python 复制代码
import numpy as np
a = [[1,2], [3,4]]
b = np.array(a) 
c = b.sum(axis=0).max() #求每列总和中的最大值 6
d = b.sum(axis=1).max() #求每行总和中的最大值 7
e = b.sum()  #求整个数组的总和 10
相关推荐
幽兰的天空36 分钟前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书4 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小二·6 小时前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼7 小时前
Python 神经网络项目常用语法
python
一念之坤8 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wxl7812279 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder9 小时前
Python入门(12)--数据处理
开发语言·python
LKID体10 小时前
Python操作neo4j库py2neo使用(一)
python·oracle·neo4j
小尤笔记10 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础