Backend - 数据分析 Numpy

目录

一、作用

二、基础环境

(一)执行虚拟环境的终端命令

(二)代码中导包

三、数组操作

(一)创建数组

[1. 创建一维数组](#1. 创建一维数组)

(1)基本建立

(2)建立后,值类型统一

[2. 建立二维数组](#2. 建立二维数组)

(二)数组取值

[1. 取一维数组的值](#1. 取一维数组的值)

(1)取单个值

(2)取范围值

[2. 取得二维数组的值](#2. 取得二维数组的值)

(1)取某个值

(2)取某列

(3)取某行

(三)查看数据类型

(四)向量化运算

(五)聚合计算

[1. 常用](#1. 常用)

[2. 指定轴向](#2. 指定轴向)


一、作用

数值计算库。

二、基础环境

(一)执行虚拟环境的终端命令

bash 复制代码
pip install numpy

(二)代码中导包

python 复制代码
import numpy as np

三、数组操作

(一)创建数组

1. 创建一维数组

(1)基本建立
python 复制代码
a = [1,2,3,4]
b = np.array(a)  # [1 2 3 4]
(2)建立后,值类型统一
python 复制代码
a = [1,'aa',3,4]
b = np.array(a)  # ['1' 'aa' '3' '4']

2. 建立二维数组

python 复制代码
a = [['aa',2], [3,4]]
b = np.array(a) 

b 结果是:

bash 复制代码
[['aa' '2']
 ['3' '4']]

(二)数组取值

1. 取一维数组的值

(1)取单个值
python 复制代码
a = np.array([1,2,3,4,5,6,7])
b =a[0] # 1
(2)取范围值
python 复制代码
a = np.array([1,2,3,4,5,6,7])
b2 = a[2:5]  # [3 4 5]

2. 取得二维数组的值

(1)取某个值
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
c = b[0,1] 
print(c)  # 2
(2)取某列
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
d = b[:, 0] 
print(d)  # [1,3]
(3)取某行
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
e = b[1, :]
print(e)  # [3,4]

(三)查看数据类型

python 复制代码
a = [1,2,3,4]
b = np.array(a)   # [1 2 3 4]
c = b.dtype  # int32

(四)向量化运算

python 复制代码
a = [1,2,3,4]
b = np.array(a)   # [1 2 3 4]
c = b*3   # [3 6 9 12]
d = b+b   # [2 4 6 8]

(五)聚合计算

1. 常用

python 复制代码
import numpy as np
np.sum() 计算总和
np.any() 是否存在元素为真
np.all() 所有元素是否为真
np.prod() 所有元素乘积
np.mean() 平均值
np.median() 中位数
np.std() 标准差
np.var() 方差
np.power() 幂运算
np.sqrt() 开方
np.argmin() 最小值的索引
np.argmax() 最大值的索引
np.inf 无穷大
np.exp(10) 以e为底的指数
np.log(10) 对数

举例:

python 复制代码
a = np.array([0,1,2,3,4])
print(np.sum(a)) # 10
print(np.any(a)) # True
print(np.all(a)) # False
print(np.prod(a)) # 0
print(np.mean(a)) # 2.0
print(np.median(a)) # 2.0
print(np.std(a)) # 1.4142135623730951
print(np.var(a)) # 2.0
print(np.power(a, 2)) # [ 0  1  4  9 16]
print(np.sqrt(a)) # [0.  1.  1.41421356  1.73205081  2. ]
print(np.argmin(a)) # 0
print(np.argmax(a)) # 4
print(np.inf) # inf
print(np.exp(10)) # 22026.465794806718
print(np.log(10)) # 2.302585092994046

2. 指定轴向

python 复制代码
import numpy as np
a = [[1,2], [3,4]]
b = np.array(a) 
c = b.sum(axis=0).max() #求每列总和中的最大值 6
d = b.sum(axis=1).max() #求每行总和中的最大值 7
e = b.sum()  #求整个数组的总和 10
相关推荐
yannan2019031315 分钟前
【算法】(Python)动态规划
python·算法·动态规划
竹笋常青22 分钟前
《流星落凡尘》
django·numpy
蒙娜丽宁25 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev27 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
好喜欢吃红柚子40 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python1 小时前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯1 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
千天夜1 小时前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
测试界的酸菜鱼1 小时前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~1 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习