Backend - 数据分析 Numpy

目录

一、作用

二、基础环境

(一)执行虚拟环境的终端命令

(二)代码中导包

三、数组操作

(一)创建数组

[1. 创建一维数组](#1. 创建一维数组)

(1)基本建立

(2)建立后,值类型统一

[2. 建立二维数组](#2. 建立二维数组)

(二)数组取值

[1. 取一维数组的值](#1. 取一维数组的值)

(1)取单个值

(2)取范围值

[2. 取得二维数组的值](#2. 取得二维数组的值)

(1)取某个值

(2)取某列

(3)取某行

(三)查看数据类型

(四)向量化运算

(五)聚合计算

[1. 常用](#1. 常用)

[2. 指定轴向](#2. 指定轴向)


一、作用

数值计算库。

二、基础环境

(一)执行虚拟环境的终端命令

bash 复制代码
pip install numpy

(二)代码中导包

python 复制代码
import numpy as np

三、数组操作

(一)创建数组

1. 创建一维数组

(1)基本建立
python 复制代码
a = [1,2,3,4]
b = np.array(a)  # [1 2 3 4]
(2)建立后,值类型统一
python 复制代码
a = [1,'aa',3,4]
b = np.array(a)  # ['1' 'aa' '3' '4']

2. 建立二维数组

python 复制代码
a = [['aa',2], [3,4]]
b = np.array(a) 

b 结果是:

bash 复制代码
[['aa' '2']
 ['3' '4']]

(二)数组取值

1. 取一维数组的值

(1)取单个值
python 复制代码
a = np.array([1,2,3,4,5,6,7])
b =a[0] # 1
(2)取范围值
python 复制代码
a = np.array([1,2,3,4,5,6,7])
b2 = a[2:5]  # [3 4 5]

2. 取得二维数组的值

(1)取某个值
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
c = b[0,1] 
print(c)  # 2
(2)取某列
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
d = b[:, 0] 
print(d)  # [1,3]
(3)取某行
python 复制代码
a = [[1,2], [3,4]]
b = np.array(a) 
e = b[1, :]
print(e)  # [3,4]

(三)查看数据类型

python 复制代码
a = [1,2,3,4]
b = np.array(a)   # [1 2 3 4]
c = b.dtype  # int32

(四)向量化运算

python 复制代码
a = [1,2,3,4]
b = np.array(a)   # [1 2 3 4]
c = b*3   # [3 6 9 12]
d = b+b   # [2 4 6 8]

(五)聚合计算

1. 常用

python 复制代码
import numpy as np
np.sum() 计算总和
np.any() 是否存在元素为真
np.all() 所有元素是否为真
np.prod() 所有元素乘积
np.mean() 平均值
np.median() 中位数
np.std() 标准差
np.var() 方差
np.power() 幂运算
np.sqrt() 开方
np.argmin() 最小值的索引
np.argmax() 最大值的索引
np.inf 无穷大
np.exp(10) 以e为底的指数
np.log(10) 对数

举例:

python 复制代码
a = np.array([0,1,2,3,4])
print(np.sum(a)) # 10
print(np.any(a)) # True
print(np.all(a)) # False
print(np.prod(a)) # 0
print(np.mean(a)) # 2.0
print(np.median(a)) # 2.0
print(np.std(a)) # 1.4142135623730951
print(np.var(a)) # 2.0
print(np.power(a, 2)) # [ 0  1  4  9 16]
print(np.sqrt(a)) # [0.  1.  1.41421356  1.73205081  2. ]
print(np.argmin(a)) # 0
print(np.argmax(a)) # 4
print(np.inf) # inf
print(np.exp(10)) # 22026.465794806718
print(np.log(10)) # 2.302585092994046

2. 指定轴向

python 复制代码
import numpy as np
a = [[1,2], [3,4]]
b = np.array(a) 
c = b.sum(axis=0).max() #求每列总和中的最大值 6
d = b.sum(axis=1).max() #求每行总和中的最大值 7
e = b.sum()  #求整个数组的总和 10
相关推荐
PP东43 分钟前
Pyhton基础之多继承、多态
开发语言·python
菜鸟的日志1 小时前
【音频字幕】构建一个离线视频字幕生成系统:使用 WhisperX 和 Faster-Whisper 的 Python 实现
python·whisper·音视频
小宁爱Python2 小时前
基于 Django+Vue3 的 AI 海报生成平台开发(海报模块专项)
人工智能·python·django
红豆怪怪2 小时前
[LeetCode 热题 100] 32. 最长有效括号
数据结构·python·算法·leetcode·动态规划·代理模式
大嘴带你水论文3 小时前
震惊!仅用10张照片就能随意编辑3D人脸?韩国KAIST最新黑科技FFaceNeRF解析!
论文阅读·人工智能·python·科技·计算机视觉·3d·transformer
CodeCraft Studio3 小时前
国产化PDF处理控件Spire.PDF教程:如何在 Java 中通过模板生成 PDF
java·python·pdf·spire.pdf·java创建pdf·从html创建pdf
摆烂z4 小时前
Jupyter Notebook的交互式开发环境方便py开发
ide·python·jupyter
一乐小哥5 小时前
一口气同步10年豆瓣记录———豆瓣书影音同步 Notion分享 🚀
后端·python
华研前沿标杆游学5 小时前
华为在国内搞的研发基地有多野?标杆游学带你解锁“研发界顶流”
python
小胖墩有点瘦5 小时前
【基于深度学习的中草药识别系统】
人工智能·python·深度学习·课程设计·计算机毕业设计·中草药识别