Pytorch基础:torch.cuda.set_device函数

相关阅读

Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm=1001.2014.3001.5482


torch.cuda.set_device函数用于设置当前使用的cuda设备,在当拥有多个可用的GPU且能被pytorch识别的cuda设备情况下(环境变量CUDA_VISIBLE_DEVICES可以影响GPU设备到cuda设备的映射)。

由于有些情况下,可以不显式写出cuda设备的编号,此时指的是当前使用的cuda设备,默认为cuda0设备,如下所示。

import torch
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备

a=torch.tensor([1, 2, 3, 4, 5], device='cuda') # 在当前cuda设备上创建一个张量
print(a)

device=torch.device('cuda')                    # 创建一个当前cuda设备

b=torch.tensor([1, 2, 3, 4, 5], device=device) # 在当前cuda设备上创建一个张量
print(b)

c=torch.tensor([1, 2, 3, 4, 5]).to(device)     # 将张量移动到当前cuda设备
print(c)

d=torch.tensor([1, 2, 3, 4, 5]).to('cuda')     # 将张量移动到当前cuda设备
print(d)

e=torch.tensor([1, 2, 3, 4, 5]).cuda()         # 将张量移动到当前cuda设备
print(e)

f=torch.tensor([1, 2, 3, 4, 5]).cuda(device)   # 将张量移动到当前cuda设备
print(f)

输出:
当前cuda设备是 0
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')

可以看到上面几个例子的在创建和转移张量时,指定了没有编号的当前cuda字符串,创建和使用的设备也是没有编号的当前cuda设备,在使用.cuda()方法时也没有指定编号或者使用了当前cuda设备。

使用torch.cuda.set_device函数可以设置任意一个可用的cuda设备为当前cuda设备,这会影响有关当前cuda设备的命令,如下所示。

import torch

torch.cuda.set_device(1)                            # 设置当前cuda设备编号为1
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
a=torch.tensor([1, 2, 3, 4, 5], device='cuda') # 在当前cuda设备上创建一个张量
print(a)

device=torch.device('cuda')                    # 创建一个当前cuda设备

torch.cuda.set_device(2)                       # 设置当前cuda设备编号为2
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
b=torch.tensor([1, 2, 3, 4, 5], device=device) # 在当前cuda设备上创建一个张量
print(b)

torch.cuda.set_device(0)                       # 设置当前cuda设备编号为0
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
c=torch.tensor([1, 2, 3, 4, 5]).to(device)     # 将张量移动到当前cuda设备
print(c)

torch.cuda.set_device(1)                       # 设置当前cuda设备编号为1
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
d=torch.tensor([1, 2, 3, 4, 5]).to('cuda')     # 将张量移动到当前cuda设备
print(d)

torch.cuda.set_device(2)                       # 设置当前cuda设备编号为2
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
e=torch.tensor([1, 2, 3, 4, 5]).cuda()         # 将张量移动到当前cuda设备
print(e)

torch.cuda.set_device(0)                       # 设置当前cuda设备编号为0
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
f=torch.tensor([1, 2, 3, 4, 5]).cuda(device)   # 将张量移动到当前cuda设备
print(f)

输出:
当前cuda设备是 1
tensor([1, 2, 3, 4, 5], device='cuda:1')
当前cuda设备是 2
tensor([1, 2, 3, 4, 5], device='cuda:2')
当前cuda设备是 0
tensor([1, 2, 3, 4, 5], device='cuda:0')
当前cuda设备是 1
tensor([1, 2, 3, 4, 5], device='cuda:1')
当前cuda设备是 2
tensor([1, 2, 3, 4, 5], device='cuda:2')
当前cuda设备是 0
tensor([1, 2, 3, 4, 5], device='cuda:0')

从上面的例子中,可以看出torch.cuda.set_device函数可以接受一个正整数参数作为编号,改变当前cuda设备。它还可以接受一个device对象作为参数,前提是这个device对象是有编号(即不能是当前cuda设备)。

device =torch.device('cuda:1')
torch.cuda.set_device(device) # 这是可行的
device =torch.device('cuda')
torch.cuda.set_device(device) # 这是错误的,因为device是一个没有编号的当前cuda设备对象

输出:
ValueError: Expected a torch.device with a specified index or an integer, but got:cuda

pytorch官方不建议使用这个函数,而是直接显式指明有关cuda设备的编号,而不是依赖当前设备,如下所示。

import torch

a=torch.tensor([1, 2, 3, 4, 5], device='cuda:1') # 在cuda1设备上创建一个张量
print(a)

device=torch.device('cuda:2')                  # 创建一个cuda2设备

b=torch.tensor([1, 2, 3, 4, 5], device=device) # 在cuda2设备上创建一个张量
print(b)

c=torch.tensor([1, 2, 3, 4, 5]).to(device)     # 将张量移动到cuda2设备
print(c)

d=torch.tensor([1, 2, 3, 4, 5]).to('cuda:0')   # 将张量移动到cuda0设备
print(d)

e=torch.tensor([1, 2, 3, 4, 5]).cuda(1)        # 将张量移动到cuda1设备
print(e)

f=torch.tensor([1, 2, 3, 4, 5]).cuda(device)   # 将张量移动到cuda2设备
print(f)

输出:
tensor([1, 2, 3, 4, 5], device='cuda:1')
tensor([1, 2, 3, 4, 5], device='cuda:2')
tensor([1, 2, 3, 4, 5], device='cuda:2')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:1')
tensor([1, 2, 3, 4, 5], device='cuda:2')
相关推荐
千澜空2 分钟前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务
学习前端的小z5 分钟前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
斯凯利.瑞恩9 分钟前
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
python·决策树·随机森林
yannan2019031331 分钟前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法33 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR33 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
打羽毛球吗️39 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
蒙娜丽宁41 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev42 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
好喜欢吃红柚子1 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn