Pytorch基础:torch.cuda.set_device函数

相关阅读

Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm=1001.2014.3001.5482


torch.cuda.set_device函数用于设置当前使用的cuda设备,在当拥有多个可用的GPU且能被pytorch识别的cuda设备情况下(环境变量CUDA_VISIBLE_DEVICES可以影响GPU设备到cuda设备的映射)。

由于有些情况下,可以不显式写出cuda设备的编号,此时指的是当前使用的cuda设备,默认为cuda0设备,如下所示。

复制代码
import torch
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备

a=torch.tensor([1, 2, 3, 4, 5], device='cuda') # 在当前cuda设备上创建一个张量
print(a)

device=torch.device('cuda')                    # 创建一个当前cuda设备

b=torch.tensor([1, 2, 3, 4, 5], device=device) # 在当前cuda设备上创建一个张量
print(b)

c=torch.tensor([1, 2, 3, 4, 5]).to(device)     # 将张量移动到当前cuda设备
print(c)

d=torch.tensor([1, 2, 3, 4, 5]).to('cuda')     # 将张量移动到当前cuda设备
print(d)

e=torch.tensor([1, 2, 3, 4, 5]).cuda()         # 将张量移动到当前cuda设备
print(e)

f=torch.tensor([1, 2, 3, 4, 5]).cuda(device)   # 将张量移动到当前cuda设备
print(f)

输出:
当前cuda设备是 0
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:0')

可以看到上面几个例子的在创建和转移张量时,指定了没有编号的当前cuda字符串,创建和使用的设备也是没有编号的当前cuda设备,在使用.cuda()方法时也没有指定编号或者使用了当前cuda设备。

使用torch.cuda.set_device函数可以设置任意一个可用的cuda设备为当前cuda设备,这会影响有关当前cuda设备的命令,如下所示。

复制代码
import torch

torch.cuda.set_device(1)                            # 设置当前cuda设备编号为1
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
a=torch.tensor([1, 2, 3, 4, 5], device='cuda') # 在当前cuda设备上创建一个张量
print(a)

device=torch.device('cuda')                    # 创建一个当前cuda设备

torch.cuda.set_device(2)                       # 设置当前cuda设备编号为2
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
b=torch.tensor([1, 2, 3, 4, 5], device=device) # 在当前cuda设备上创建一个张量
print(b)

torch.cuda.set_device(0)                       # 设置当前cuda设备编号为0
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
c=torch.tensor([1, 2, 3, 4, 5]).to(device)     # 将张量移动到当前cuda设备
print(c)

torch.cuda.set_device(1)                       # 设置当前cuda设备编号为1
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
d=torch.tensor([1, 2, 3, 4, 5]).to('cuda')     # 将张量移动到当前cuda设备
print(d)

torch.cuda.set_device(2)                       # 设置当前cuda设备编号为2
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
e=torch.tensor([1, 2, 3, 4, 5]).cuda()         # 将张量移动到当前cuda设备
print(e)

torch.cuda.set_device(0)                       # 设置当前cuda设备编号为0
print("当前cuda设备是", torch.cuda.current_device()) # 获取当前cuda设备
f=torch.tensor([1, 2, 3, 4, 5]).cuda(device)   # 将张量移动到当前cuda设备
print(f)

输出:
当前cuda设备是 1
tensor([1, 2, 3, 4, 5], device='cuda:1')
当前cuda设备是 2
tensor([1, 2, 3, 4, 5], device='cuda:2')
当前cuda设备是 0
tensor([1, 2, 3, 4, 5], device='cuda:0')
当前cuda设备是 1
tensor([1, 2, 3, 4, 5], device='cuda:1')
当前cuda设备是 2
tensor([1, 2, 3, 4, 5], device='cuda:2')
当前cuda设备是 0
tensor([1, 2, 3, 4, 5], device='cuda:0')

从上面的例子中,可以看出torch.cuda.set_device函数可以接受一个正整数参数作为编号,改变当前cuda设备。它还可以接受一个device对象作为参数,前提是这个device对象是有编号(即不能是当前cuda设备)。

复制代码
device =torch.device('cuda:1')
torch.cuda.set_device(device) # 这是可行的
device =torch.device('cuda')
torch.cuda.set_device(device) # 这是错误的,因为device是一个没有编号的当前cuda设备对象

输出:
ValueError: Expected a torch.device with a specified index or an integer, but got:cuda

pytorch官方不建议使用这个函数,而是直接显式指明有关cuda设备的编号,而不是依赖当前设备,如下所示。

复制代码
import torch

a=torch.tensor([1, 2, 3, 4, 5], device='cuda:1') # 在cuda1设备上创建一个张量
print(a)

device=torch.device('cuda:2')                  # 创建一个cuda2设备

b=torch.tensor([1, 2, 3, 4, 5], device=device) # 在cuda2设备上创建一个张量
print(b)

c=torch.tensor([1, 2, 3, 4, 5]).to(device)     # 将张量移动到cuda2设备
print(c)

d=torch.tensor([1, 2, 3, 4, 5]).to('cuda:0')   # 将张量移动到cuda0设备
print(d)

e=torch.tensor([1, 2, 3, 4, 5]).cuda(1)        # 将张量移动到cuda1设备
print(e)

f=torch.tensor([1, 2, 3, 4, 5]).cuda(device)   # 将张量移动到cuda2设备
print(f)

输出:
tensor([1, 2, 3, 4, 5], device='cuda:1')
tensor([1, 2, 3, 4, 5], device='cuda:2')
tensor([1, 2, 3, 4, 5], device='cuda:2')
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:1')
tensor([1, 2, 3, 4, 5], device='cuda:2')
相关推荐
资讯分享周几秒前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
思则变1 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
叶子爱分享1 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜1 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿1 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_1 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1231 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
漫谈网络2 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
学技术的大胜嗷2 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手2 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习