4. 从感知机到神经网络

目录

[1. 从感知机到神经网络](#1. 从感知机到神经网络)

[1.1 区别](#1.1 区别)

[1.2 定义](#1.2 定义)

[2. 最简单的神经网络](#2. 最简单的神经网络)

[2.1 层神经网络](#2.1 层神经网络)

[2.2 数学表达式](#2.2 数学表达式)

[3. 激活函数的引入](#3. 激活函数的引入)


1. 从感知机到神经网络

1.1 区别

之前章节我们了解了感知机,感知机可以处理与门、非与门、或门、异或门等逻辑运算;不过在感知机中设定权重的工作是由人工来做的,而设定合适的,符合预期的输入与输出的权重,是一项非常繁重的工作。神经网络就是为了实现这一工作,它的一个重要性质就是可以自动的从数据中学到合适的权重参数。

1.2 定义

神经网络又叫人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。

2. 最简单的神经网络

2.1 3 层神经网络

从下图可以看到,最左边的即输入层, 0 层;最右边的即输出层,2 层;中间的即中间层,中间层又叫隐藏层,1 层。其中只有输入层、中间层具有权重,可以称之为 2 层网络,也可以按照网络的级数称之为 3 层网络。这个图看起来和感知机没啥区别。

2.2 数学表达式

我们回想一下感知机:

可以用数学式来表示上图的感知机

这个数学式可以进行改写,

把输入信号的总和 (b+w1*x1+w2*x2) 设置为 x,则相当于

此时 h(x) 函数会将输入信号的总和转换为输出信号,这种函数就称之为激活函数(activation function)。

3. 激活函数的引入

有了激活函数的引入,原来的感知机图,就可以转换为神经元图。激活函数是连接感知机和神经网络的桥梁。

请注意,此处激活函数以阈值为界,一旦输入超过阈值,就切换输出,这样的函数称之为"阶跃函数"。感知机是选择了阶跃函数,如果感知机选择了其他函数作为激活函数,那么就进入了神经网络的世界了!

请大家注意,激活函数的不同,是感知机和神经网络的根本差异。

相关推荐
qzhqbb2 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨3 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌4 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭4 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246665 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k5 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班5 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型