4. 从感知机到神经网络

目录

[1. 从感知机到神经网络](#1. 从感知机到神经网络)

[1.1 区别](#1.1 区别)

[1.2 定义](#1.2 定义)

[2. 最简单的神经网络](#2. 最简单的神经网络)

[2.1 层神经网络](#2.1 层神经网络)

[2.2 数学表达式](#2.2 数学表达式)

[3. 激活函数的引入](#3. 激活函数的引入)


1. 从感知机到神经网络

1.1 区别

之前章节我们了解了感知机,感知机可以处理与门、非与门、或门、异或门等逻辑运算;不过在感知机中设定权重的工作是由人工来做的,而设定合适的,符合预期的输入与输出的权重,是一项非常繁重的工作。神经网络就是为了实现这一工作,它的一个重要性质就是可以自动的从数据中学到合适的权重参数。

1.2 定义

神经网络又叫人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。

2. 最简单的神经网络

2.1 3 层神经网络

从下图可以看到,最左边的即输入层, 0 层;最右边的即输出层,2 层;中间的即中间层,中间层又叫隐藏层,1 层。其中只有输入层、中间层具有权重,可以称之为 2 层网络,也可以按照网络的级数称之为 3 层网络。这个图看起来和感知机没啥区别。

2.2 数学表达式

我们回想一下感知机:

可以用数学式来表示上图的感知机

这个数学式可以进行改写,

把输入信号的总和 (b+w1*x1+w2*x2) 设置为 x,则相当于

此时 h(x) 函数会将输入信号的总和转换为输出信号,这种函数就称之为激活函数(activation function)。

3. 激活函数的引入

有了激活函数的引入,原来的感知机图,就可以转换为神经元图。激活函数是连接感知机和神经网络的桥梁。

请注意,此处激活函数以阈值为界,一旦输入超过阈值,就切换输出,这样的函数称之为"阶跃函数"。感知机是选择了阶跃函数,如果感知机选择了其他函数作为激活函数,那么就进入了神经网络的世界了!

请大家注意,激活函数的不同,是感知机和神经网络的根本差异。

相关推荐
EasyCVR3 小时前
视频融合平台EasyCVR在智慧水利中的实战应用:构建全域感知与智能预警平台
人工智能·音视频
DisonTangor3 小时前
阿里开源Qwen3-Omni-30B-A3B三剑客——Instruct、Thinking 和 Captioner
人工智能·语言模型·开源·aigc
独孤--蝴蝶3 小时前
AI人工智能-机器学习-第一周(小白)
人工智能·机器学习
西柚小萌新3 小时前
【深入浅出PyTorch】--上采样+下采样
人工智能·pytorch·python
丁学文武3 小时前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
fie88894 小时前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
文火冰糖的硅基工坊5 小时前
[嵌入式系统-100]:常见的IoT(物联网)开发板
人工智能·物联网·架构
刘晓倩5 小时前
实战任务二:用扣子空间通过任务提示词制作精美PPT
人工智能
shut up5 小时前
LangChain - 如何使用阿里云百炼平台的Qwen-plus模型构建一个桌面文件查询AI助手 - 超详细
人工智能·python·langchain·智能体
Hy行者勇哥5 小时前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能