InternLM-llama3微调(进阶作业)

微调llama3 增强图片理解

复制代码
#环境配置
conda create -n llama3 python=3.10
conda activate llama3
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
cd ~
git clone -b v0.1.18 https://github.com/InternLM/XTuner
cd XTuner
pip install -e .[all]
cd ~
git clone https://github.com/SmartFlowAI/Llama3-Tutorial
#准备模型
#1 llama3模型
mkdir -p ~/model
cd ~/model
git lfs install
git clone https://code.openxlab.org.cn/MrCat/Llama-3-8B-Instruct.git Meta-Llama-3-8B-Instruct
#2准备 Llava 所需要的 openai/clip-vit-large-patch14-336,权重,即 Visual Encoder 权重
mkdir -p ~/model
cd ~/model
ln -s /root/share/new_models/openai/clip-vit-large-patch14-336 .
#3准备 Llava 将要用到的 Image Projector 部分权重
mkdir -p ~/model
cd ~/model
ln -s /root/share/new_models/xtuner/llama3-llava-iter_2181.pth .

Llama3-8B-Instruct 权重:这是核心的模型权重,负责处理文本数据和执行指令性任务。
Visual Encoder 权重(openai/clip-vit-large-patch14-336):用于图像理解,将图像转换成模型可以理解的表示。
Image Projector 权重:这个权重通常用于进一步处理从 Visual Encoder 得到的图像表示,使其更适合与文本数据进行融合和交互。

Image Projector 输入图像 图像向量 输入文本 文本Embedding模型 文本向量 L L M 输出文本

#准备数据

cd ~

git clone https://github.com/InternLM/tutorial -b camp2

python ~/tutorial/xtuner/llava/llava_data/repeat.py

-i ~/tutorial/xtuner/llava/llava_data/unique_data.json

-o ~/tutorial/xtuner/llava/llava_data/repeated_data.json

-n 200

#启动训练

xtuner train ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py --work-dir ~/llama3_llava_pth --deepspeed deepspeed_zero2

但是我出现了显卡不够的情况

把命令替换成xtuner train ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py --work-dir ~/llama3_llava_pth --deepspeed deepspeed_zero2_offload

区别在于:后者是显存不足,内存来补。 看到训练正常了

然后比较训练前和训练后

复制代码
#训练前
export MKL_SERVICE_FORCE_INTEL=1
xtuner chat /root/model/Meta-Llama-3-8B-Instruct \
  --visual-encoder /root/model/clip-vit-large-patch14-336 \
  --llava /root/llama3_llava_pth/pretrain_iter_2181_hf \
  --prompt-template llama3_chat \
  --image /root/tutorial/xtuner/llava/llava_data/test_img/oph.jpg
#训练后
export MKL_SERVICE_FORCE_INTEL=1
xtuner chat /root/model/Meta-Llama-3-8B-Instruct \
  --visual-encoder /root/model/clip-vit-large-patch14-336 \
  --llava /root/llama3_llava_pth/iter_1200_hf \
  --prompt-template llama3_chat \
  --image /root/tutorial/xtuner/llava/llava_data/test_img/oph.jpg

可以看到

相关推荐
丁先生qaq6 分钟前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
Eiceblue15 分钟前
Python读取PDF:文本、图片与文档属性
数据库·python·pdf
红衣小蛇妖27 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
weixin_5275504028 分钟前
初级程序员入门指南
javascript·python·算法
KKKlucifer44 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
程序员的世界你不懂1 小时前
Appium+python自动化(十)- 元素定位
python·appium·自动化
DisonTangor1 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
CryptoPP2 小时前
使用WebSocket实时获取印度股票数据源(无调用次数限制)实战
后端·python·websocket·网络协议·区块链
树叶@2 小时前
Python数据分析7
开发语言·python
老胖闲聊3 小时前
Python Rio 【图像处理】库简介
开发语言·图像处理·python