基于萤火虫+Gmapping、分层+A*优化的导航方案

REF:基于激光和视觉SLAM 的自主导航机器人系统设计

1. 系统架构

  • 机器人硬件框架

  • 机器人系统软硬件框架

2. SLAM建图

  • RTAB-MAP位姿估计:(real-time appearance-based mapping),将深度相机和激光雷达的特征描述符放入相同的视觉词袋进行联合,采用优化框架Bundle Adjustment将特征点的匹配关系和位姿变换进行联合优化,通过高斯牛顿法最小化重投影误差E,得到最优位姿估计。

  • 萤火虫算法(FA):通过模拟萤火虫之间的相互吸引行为来寻找最优解,吸引度函数用于描述萤火虫之间的吸引强度

  • 基于FA优化GMapping算法:萤火虫算法引导重采样过程,通过选择有效粒子数 Neff为优化目标函数,对建图精度进行优化

    1. 生成重采样阈值:随机生成一组初始萤火虫

    2. 计算退化度:对每个重采样阈值,计算目标粒子退化度

    3. 计算吸引度:根据目标和当前值的间距,计算吸引度函数,亮度高的萤火虫吸引周围较暗的萤火虫向其移动

    4. 更新重采样阈值:根据吸引行为,更新重采样阈值使粒子退化度向目标值的方向移动

    5. 局部优化:更新粒子退化度时加入随机数,对部分重采样阈值进行局部搜索

    6. 更新退化度:对新的重采样阈值重新计算粒子退化度,即更新亮度

    7. 迭代:重复执行以上步骤,直至建图精度达到要求。

  • SLAM三维建图:

3. 路径规划

  • 传统 A* 算法:启发式搜索算法

  • 分层并行 A* (HPA*)算法:在 A* 算法基础上引入多层次地图和并行计算,在高层次上快速规划,逐渐细化到低层次,减少计算复杂度,通过并行计算拓展多个节点,提高计算效率

  • 导航方案对比:

    • 方案一:FA + GMapping + AMCL + HPA* + DWA

    • 方案二:FA + GMapping + AMCL + HPA* + DWA + EKF + RATB-MAP

    • 方案三:GMapping + AMCL + A* + DWA

相关推荐
aitoolhub11 分钟前
精选AI设计工具测评:创新性、易用性及行业应用
人工智能·在线设计
safestar201244 分钟前
n8n 架构深度解构:从设计哲学到企业级实践
人工智能·ai编程
喵手1 小时前
AI在自动化与机器人技术中的前沿应用
人工智能·机器人·自动化
一只乔哇噻1 小时前
java后端工程师+AI大模型进修ing(研一版‖day55)
人工智能
小毅&Nora2 小时前
【AI微服务】【Spring AI Alibaba】② Agent 深度实战:构建可记忆、可拦截、可流式的智能体系统
人工智能·微服务·spring-ai
陈天伟教授2 小时前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客2402 小时前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿3 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉3 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中4 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习