大语言模型LLM应用篇

大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者希望通过三篇文章总结(入门篇、原理篇和应用篇)将思路写下来,以便跟我一样的新手读者快速了解大模型的方方面面。在这里,笔者先强调一下,本系列文章的深度有限,只是个人对大模型知识脉络的梳理,同时也会借鉴一下同行的博客内容充实本文,文末将会注明参考来源。

本文着重介绍大语言模型本身的开发应用,而不是大模型在行业的应用,如果要了解在行业的应用,读者可以直接上字节跳动的Coze平台或者百度的千帆平台,上面已经有很多通过大模型实现的智能体Agent,也许有一款满足你的需求。

笔者认为大语言模型本身的开发应用可以分为三层:

  • 模型基础研发

    从0开始研发大模型或者基于现有开源模型打造自己的大模型,这种方式需要大量人才和资金,成本非常高。

  • 模型定制优化

    基于现有模型进行调整优化,打造满足自身需求的定制化大模型。该方式定制化程度比较高,成本投入相对较多。主要实现方式有三种:

    • 模型训练(Training)
    • 模型微调(FineTune)
    • 提示词工程(Prompt Engneering)
  • 模型应用开发

    针对用户需求,基于大模型开发各种AI应用。该方式投入成本比较少,实现速度快。目前开发AI应用有两个途径:

    • 基于大模型开发框架实现,该方式需要进行编码。常用框架有:LangChain、AutoGPT等;
    • 基于AI开发平台实现,该方式无需编码。国内主要平台有:字节跳动Coze、百度的千帆平台。

笔者针对上述内容绘制了一张开发应用分层图,如下:

上图中每一个开发应用方向都值得我们深入研究,就看读者对哪个方向最感兴趣了。

相关推荐
小雷FansUnion1 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周1 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享2 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜2 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿2 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_2 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1232 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷3 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手3 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
江瀚视野3 小时前
百度文心大模型4.5系列正式开源,开源会给百度带来什么?
人工智能