代码+视频,R言语处理数据中的缺失值

在SCI论文中,我们不可避免和缺失数据打交道,特别是在回顾性研究,对于缺失的协变量(就是混杂因素),我们可以使用插补补齐数据,但是对于结局变量和原因变量的缺失,我们不能这么做。部分人的做法是直接删除掉这部分的数据(如SEER数据库),有些高分SCI杂志的审稿人会问你缺失数据的情况和你是怎么处理的,如果我们能附上一个缺失数据和未缺失数据比较的表格,可以起到一表抵千言万语的作用,如下图。

如表格所示,如果比较出缺失数据和未缺失数据P值大于0.05,说明数据为随机缺失,删除后对数据分布没有影响,但如果小于0.05,你删除这部分数据则要说明删除原因。

今天咱们视频演示一下如何R语言做出上面的表格

R言语处理数据中的缺失值

代码

r 复制代码
library(foreign)
library("survival")
library(tidyverse)
library(compareGroups)
bc<-read.spss("E:/r/test/Breast cancer survival agec.sav",
                use.value.labels=F, to.data.frame=T)
head(bc,10)

# age表示年龄,pathsize表示病理肿瘤大小(厘米),lnpos表示腋窝淋巴结阳性,histgrad表示病理组织学等级,
# er表示雌激素受体状态,pr表示孕激素受体状态,status结局事件是否死亡,pathscat表示病理肿瘤大小类别(分组变量),
# ln_yesno表示是否有淋巴结肿大,time是生存时间,后面的agec是我们自己设定的,不用管它。

#假设我们想知道er表示雌激素受体状态和结局死亡的关系,我们看到er还是有很多缺失值的,我们先要把这部分缺失值提出来

bc1<-bc%>%
  mutate(
    cancelled=is.na(er)
  )

bc1$cancelled<-ifelse(bc1$cancelled=="TRUE",1,0)

##分类变量转成因子
bc1$lnpos <- factor(bc1$lnpos)
bc1$histgrad <- factor(bc1$histgrad)
bc1$pr <- factor(bc1$pr)
bc1$status<- factor(bc1$status)
bc1$pathscat<- factor(bc1$pathscat)
bc1$ln_yesno<- factor(bc1$ln_yesno)
bc1$cancelled<-factor(bc1$cancelled)

###生成表格
descrTable(cancelled~ .-er, data = bc1)  ##要减掉er这个变量

# status:                             0.927   
# 0     818 (94.1%) 317 (93.8%)           
# 1     51 (5.87%)  21 (6.21%)    

#换个方式
descrTable(status~cancelled, data = bc1)

# cancelled:                          0.927   
# 0      818 (72.1%) 51 (70.8%)           
# 1      317 (27.9%) 21 (29.2%)  
相关推荐
湫ccc1 小时前
《Python基础》之字符串格式化输出
开发语言·python
mqiqe1 小时前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql
AttackingLin2 小时前
2024强网杯--babyheap house of apple2解法
linux·开发语言·python
Ysjt | 深2 小时前
C++多线程编程入门教程(优质版)
java·开发语言·jvm·c++
ephemerals__2 小时前
【c++丨STL】list模拟实现(附源码)
开发语言·c++·list
码农飞飞2 小时前
深入理解Rust的模式匹配
开发语言·后端·rust·模式匹配·解构·结构体和枚举
一个小坑货2 小时前
Rust 的简介
开发语言·后端·rust
湫ccc2 小时前
《Python基础》之基本数据类型
开发语言·python