web agent 学习 3:screen ai

学习论文:ScreenAI: A Vision-Language Model for UI and Infographics Understanding

摘要部分介绍了作者的screenai,是一个专门用于UI和信息图形理解的视觉语言模型。模型利用pix2struct灵活的补丁策略改进了PaLI架构,并在独特的数据集混合上进行了训练。

他的主要任务是屏幕注释(识别UI的类别,位置),用这些注释交给大语言模型,并自动生成问答(QA)、UI导航和摘要训练数据集。最后还做了消融实验。

主要贡献如下:

我们提出ScreenAI,一种视觉语言模型(VLM),作为一种整体解决方案,专注于理解UI和信息图形,利用其常见的视觉语言和设计复杂性。

•我们介绍了UI的文本表示,用于教我们的模型如何在预训练阶段理解UI。

•我们利用这种新的UI表示和大型语言模型(LLM)自动大规模生成训练数据。

•我们定义了预训练和微调混合物,涵盖了UI和信息图理解中的广泛任务。

•我们为第4.2节中描述的任务发布了三个评估数据集:Screen Annotation、ScreenQA Short和Complex ScreenQA。这些数据集使研究界能够利用我们的文本表示和al low对基于屏幕的问答模型进行更全面的基准测试。

模型结构如图:

可以看到,这里的图像和文字是一起embed,一起自注意力的,因为他们都是输入。记住decoder那边永远只会有字典,不会有正儿八经的输入数据走那边的。

接下里是重量级:数据集怎么做的。

首先作者收集了大量的截图,然后给他们做注释。注释就是给图像上的各个元素加上框框,同时解释一下是什么东西。这个其实就是一个分类任务,有现成的模型可以用。

接下来,在大语言模型的帮助下,可以生成更高级的任务,例如QA......

最后得到的数据集:

最后我们使用这个数据集训练模型,训练项目其实也就是注释,QA,Navigation(就是叫他'返回',他会知道要按哪个按钮),总结。

这样,在注释模型,常规多模态大语言模型的帮助下,我们做出了一个注重UI交互的数据集,并在此基础上训练出了一个重视理解UI能力的多模态大语言模型。

最后就是实验和收集数据。学习结束。

相关推荐
2303_Alpha2 分钟前
SpringBoot
笔记·学习
萘柰奈10 分钟前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity
沐矢羽31 分钟前
Tomcat PUT方法任意写文件漏洞学习
学习·tomcat
好奇龙猫32 分钟前
日语学习-日语知识点小记-进阶-JLPT-N1阶段蓝宝书,共120语法(10):91-100语法+考え方13
学习
向阳花开_miemie1 小时前
Android音频学习(十八)——混音流程
学习·音视频
工大一只猿1 小时前
51单片机学习
嵌入式硬件·学习·51单片机
c0d1ng2 小时前
量子计算学习(第十四周周报)
学习·量子计算
Hello_Embed9 小时前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件
咸甜适中9 小时前
rust语言 (1.88) 学习笔记:客户端和服务器端同在一个项目中
笔记·学习·rust
Magnetic_h10 小时前
【iOS】设计模式复习
笔记·学习·ios·设计模式·objective-c·cocoa