yolov8seg 瑞芯微RKNN、地平线Horizon芯片部署、TensorRT部署,部署工程难度小、模型推理速度快

之前写过yolov8seg部署,但在实际项目中没有真正的用,最近在项目尝试使用yolov8seg,把之前的yolov8目标检测的优化给同步到yolov8seg中。

特别说明:如有侵权告知删除,谢谢。

模型和完整仿真测试代码,放在github上参考链接 模型和代码

1 模型和训练

训练代码参考官方开源的yolov8训练代码。

2 导出 yolov8 onnx

导出onnx增加以下几行代码:

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y
python 复制代码
        # 导出 onnx 增加(修改)
        # mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        mc = [self.cv4[i](x[i]) for i in range(self.nl)]
        x = self.detect(self, x)
        return x, mc, p

增加保存onnx模型代码

python 复制代码
        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["cls1", "reg1", "cls2", "reg2", "cls3", "reg3", "mc1", "mc2", "mc3", "seg"]
        torch.onnx.export(self.model, dummy_input, "./yolov8nseg_relu_80class_dfl.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=12)
        print("======================== convert onnx Finished! .... ")

修改完以上,运行推理脚本(运行会报错,但不影响onnx文件的生成)。

python 复制代码
from ultralytics import YOLO
# 推理
model = YOLO('./weights/yolov8nseg_relu_80class.pt')
results = model(task='detect', mode='predict', source='./images/test.jpg', line_width=3, show=True, save=True, device='cpu')

3 onnx测试效果

4 rknn 板端C++部署

C++完整部署代码和模型示例参考

把板端C++代码的模型和时耗也给贴出来供大家参考,使用芯片rk3588。相对之前在rk3588上推理45ms,降到了15ms;后处理时耗由5ms,增加到18.6ms;整个检测过程由
50ms,降到33ms

本篇部署方式时耗参考:

之前部署方式时耗参考:

相关推荐
要努力啊啊啊19 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Ailerx21 小时前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
学技术的大胜嗷2 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
一花·一叶3 天前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币3 天前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ676580083 天前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
king of code porter12 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
model200513 天前
yolov11转ncnn
yolo·ncnn
YueiL13 天前
ROS 2 中 Astra Pro 相机与 YOLOv5 检测功能编译启动全记录
yolo·ros2
来两个炸鸡腿13 天前
【Datawhale组队学习202506】YOLO-Master task03 IOU总结
python·学习·yolo