Postgresql源码(132)分布式行锁的原理分析

相关
《Postgresql源码(131)行锁的原理分析》

1 分布式行锁

PG中的行锁在上一片中做了分析《Postgresql源码(131)行锁的原理分析》,本篇对分布式PG(PGXL)中的行锁做一些分析。(版本:Postgres-XL 10alpha2)

2 计划生成pgxc_planner

分布式PG中的计划生成有两个入口:

c 复制代码
pgxc_planner
	result = pgxc_FQS_planner(query, cursorOptions, boundParams);
	if (result) return result;
	result = standard_planner(query, cursorOptions, boundParams);
	return result;
  • pgxc_FQS_planner(Fast Query Shipping planner)尝试确定一个查询是否可以完全在DN上执行,不需要CN节点参与计算。FQS计划比较简单,直接把SQL发到某几个DN上跑。
  • standard_planner是标准查询规划器。

查询首先通过pgxc_FQS_planner看是否适合快速分发。如果不适合,会继续走standard_planner。

2.1 pgxc_FQS_planner生成FQS计划

XL默认对行锁的SQL不能走FQS,这里为了简单介绍下FQS用了一个点查的例子。

用例

sql 复制代码
drop table TBL_33;
create table TBL_33(c3 int);
insert into TBL_33 values(0);
SELECT c3 FROM TBL_33 WHERE c3=0;;

分布式执行计划

sql 复制代码
explain SELECT c3 FROM TBL_33 WHERE c3=0;
                          QUERY PLAN
---------------------------------------------------------------
 Remote Fast Query Execution  (cost=0.00..0.00 rows=0 width=0)
   Node/s: datanode_2
   ->  Seq Scan on tbl_33  (cost=0.00..41.88 rows=13 width=4)
         Filter: (c3 = 0)

pgxc_FQS_planner

c 复制代码
static PlannedStmt *
pgxc_FQS_planner(Query *query, int cursorOptions, ParamListInfo boundParams)
{
  • 用规则过滤一些不能FQS的情况:
c 复制代码
	if (!enable_fast_query_shipping)
		return NULL;
	if (cursorOptions & CURSOR_OPT_SCROLL)
		return NULL;
	if (query->utilityStmt && IsA(query->utilityStmt, RemoteQuery))
	{
		RemoteQuery *stmt = (RemoteQuery *) query->utilityStmt;
		if (stmt->exec_direct_type != EXEC_DIRECT_NONE)
			return NULL;
	}
  • 遍历查询树,用一些规则排除不能FQS的情况。
  • pgxc_shippability_walker函数在遍历的同时,会维护一个bitmap(sc_context.sc_shippability),里面记录了不能ship的各种原因,最后在pgxc_is_query_shippable函数中检测bitmap确认是否能ship。
  • exec_nodes中记录的最重要的信息就是需要在哪个节点上执行,由pgxc_FQS_find_datanodes函数计算出来。
  • 计算逻辑:
c 复制代码
	exec_nodes = pgxc_is_query_shippable(query, 0);
	if (exec_nodes == NULL)
		return NULL;

	glob = makeNode(PlannerGlobal);
	glob->boundParams = boundParams;
	root = makeNode(PlannerInfo);
	root->parse = query;
	root->glob = glob;
	root->query_level = 1;
	root->planner_cxt = CurrentMemoryContext;

	top_plan = (Plan *)pgxc_FQS_create_remote_plan(query, exec_nodes, false);

	top_plan = set_plan_references(root, top_plan);

	result = makeNode(PlannedStmt);
	result->commandType = query->commandType;
	result->canSetTag = query->canSetTag;
	result->utilityStmt = query->utilityStmt;

	if (query->commandType != CMD_SELECT)
		result->resultRelations = list_make1_int(query->resultRelation);
	result->planTree = top_plan;
	result->rtable = query->rtable;
	result->queryId = query->queryId;
	result->relationOids = glob->relationOids;
	result->invalItems = glob->invalItems;

	return result;
}
  • FQS的计划会比较简单,基本就是把SQL用deparse_query出来,然后拼到计划节点中,找到发到哪些节点执行即可。

2.2 standard_planner生成remote计划

回到行锁用例上:

sql 复制代码
drop table TBL_33;
create table TBL_33(c33 int);
insert into TBL_33 values(0);

SELECT c33 FROM TBL_33 WHERE c33=0 for update;

分布式执行计划

sql 复制代码
explain SELECT c33 FROM TBL_33 WHERE c33=0 for update;
                                  QUERY PLAN
-------------------------------------------------------------------------------
 Remote Subquery Scan on all (datanode_2)  (cost=0.00..42.01 rows=13 width=10)
   ->  LockRows  (cost=0.00..42.01 rows=13 width=10)
         ->  Seq Scan on tbl_33  (cost=0.00..41.88 rows=13 width=10)
               Filter: (c33 = 0)

2.2.1 subquery_planner→grouping_planner生成local计划

subquery_planner生成计划:

2.2.2 make_remotesubplan为计划添加remote算子

standard_planner → make_remotesubplan

c 复制代码
standard_planner
	...
	best_path = get_cheapest_fractional_path(final_rel, tuple_fraction);
	if (!root->distribution)
		root->distribution = best_path->distribution;
	top_plan = create_plan(root, best_path);
	if (root->distribution)
		top_plan = (Plan *) make_remotesubplan(root, top_plan, NULL, root->distribution, root->sort_pathkeys);

2.2.3 path的distribution信息从哪来?

explain SELECT c33 FROM TBL_33 WHERE c33=0 for update;
                                  QUERY PLAN
-------------------------------------------------------------------------------
 Remote Subquery Scan on all (datanode_2)  (cost=0.00..42.01 rows=13 width=10)
   ->  LockRows  (cost=0.00..42.01 rows=13 width=10)
         ->  Seq Scan on tbl_33  (cost=0.00..41.88 rows=13 width=10)
               Filter: (c33 = 0)

SELECT c33 FROM TBL_33 WHERE c33=0 for update;执行时会生成两个算子:

  • create_seqscan_path
  • create_lockrows_path
create_seqscan_path
c 复制代码
Path *
create_seqscan_path(PlannerInfo *root, RelOptInfo *rel,
					Relids required_outer, int parallel_workers)
{
	Path	   *pathnode = makeNode(Path);

	pathnode->pathtype = T_SeqScan;
	pathnode->parent = rel;
	pathnode->pathtarget = rel->reltarget;
	pathnode->param_info = get_baserel_parampathinfo(root, rel,
													 required_outer);
	pathnode->parallel_aware = parallel_workers > 0 ? true : false;
	pathnode->parallel_safe = rel->consider_parallel;
	pathnode->parallel_workers = parallel_workers;
	pathnode->pathkeys = NIL;	/* seqscan has unordered result */

#ifdef XCP
  • set_scanpath_distribution会配置pathnode->distribution信息,标记计划需要发到哪个节点执行。
  • restrict_distribution会更严格的检查计划发到哪个节点。
c 复制代码
	set_scanpath_distribution(root, rel, pathnode);
	if (rel->baserestrictinfo)
	{
		ListCell *lc;
		foreach (lc, rel->baserestrictinfo)
		{
			RestrictInfo *ri = (RestrictInfo *) lfirst(lc);
			restrict_distribution(root, ri, pathnode);
		}
	}
#endif
	cost_seqscan(pathnode, root, rel, pathnode->param_info);
	return pathnode;
}
  • 经过set_scanpath_distribution后
    • pathnode->distribution->nodes标记了dn0、dn1。
    • p/t pathnode->distribution->nodes->words[0] = 11
  • 经过restrict_distribution后
    • pathnode->distribution->nodesrestrictNodes只标记了datanode1。

    • p/t pathnode->distribution->restrictNodes->words[0] = 10

      p *pathnode->distribution
      $27 = {type = T_Distribution, distributionType = 72 'H', distributionExpr = 0x135fea8, nodes = 0x1360650, restrictNodes = 0x1360898}
      (gdb) p/t pathnode->distribution->nodes->words[0]
      $31 = 11
      (gdb) p/t pathnode->distribution->restrictNodes->words[0]
      $30 = 10

create_lockrows_path
  • lockrows节点比较特殊,不需要做什么事情,执行器会在执行阶段特殊处理。
  • pathnode→distribution信息集成subplan的即可。
c 复制代码
LockRowsPath *
create_lockrows_path(PlannerInfo *root, RelOptInfo *rel,
					 Path *subpath, List *rowMarks, int epqParam)
{
	LockRowsPath *pathnode = makeNode(LockRowsPath);

	pathnode->path.pathtype = T_LockRows;
	...
	...	
	pathnode->path.distribution = copyObject(subpath->distribution);
	
	...
	...
	return pathnode;
}
相关推荐
喜欢猪猪1 小时前
深度解析ElasticSearch:构建高效搜索与分析的基石原创
分布式
mqiqe2 小时前
PostgreSQL 基础操作
数据库·postgresql·oracle
蘑菇蘑菇不会开花~2 小时前
分布式Redis(14)哈希槽
redis·分布式·哈希算法
问道飞鱼4 小时前
分布式中间件-Pika一个高效的分布式缓存组件
分布式·缓存·中间件
小宋10215 小时前
玩转RabbitMQ声明队列交换机、消息转换器
服务器·分布式·rabbitmq
懒洋洋的华36910 小时前
消息队列-Kafka(概念篇)
分布式·中间件·kafka
March€11 小时前
分布式事务的基本实现
分布式
DieSnowK12 小时前
[Redis][环境配置]详细讲解
数据库·redis·分布式·缓存·环境配置·新手向·详细讲解
Lill_bin13 小时前
深入理解ElasticSearch集群:架构、高可用性与数据一致性
大数据·分布式·elasticsearch·搜索引擎·zookeeper·架构·全文检索
qingcyb20 小时前
下载Kafka 3.0.0教程
分布式·kafka