spark自定义函数实现

场景:由于系统函数无法满足实际开发需求,需要通过自定义函数来实现

示例:

scala 复制代码
package spark

import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, LongType, StructField, StructType}

object TestSparkUdf {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("student")
      .master("local[2]")
      .getOrCreate()
    import spark.implicits._
    val rdd2 = spark.sparkContext.makeRDD(Array(Student2(18, "one"), Student2(20, "two")))
    rdd2.toDF().registerTempTable("student")

    spark.udf.register("myupper", myUpper _)
    val df = spark.sql("select myupper(name) from student")
    df.show()
//    +-----------------+
//    |UDF:myupper(name)|
//    +-----------------+
//    |              ONE|
//    |              TWO|
//    +-----------------+
    spark.udf.register("myavg", new myAvg())
    val df2 = spark.sql("select myavg(age) from student")
    df2.show()
//    +----------+
//    |myavg(age)|
//    +----------+
//    |        19|
//    +----------+
    spark.stop()

  }

  //udf函数 一对一
  def myUpper(str: String): String = str.toUpperCase()

}
//case class Student(id: String, name:String)

class myAvg extends UserDefinedAggregateFunction {
  //输入数据的结构
  override def inputSchema: StructType = StructType(Array(StructField("age", LongType)))
  //缓冲区的数据结构
  override def bufferSchema: StructType = StructType(Array(StructField("total", LongType), StructField("count", LongType)))
  //函数计算结果的数据类型
  override def dataType: DataType = LongType
  //函数的稳定性
  override def deterministic: Boolean = true
  //缓冲区的初始化
  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer(0) = 0L;
    buffer(1) = 0L;
  }
  //新数据过来,如何更新缓冲区
  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    buffer.update(0, buffer.getLong(0) + input.getLong(0))
    buffer.update(1, buffer.getLong(1) + 1)
  }
  //多个缓冲区数据合并
  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1.update(0, buffer1.getLong(0) + buffer2.getLong(0))
    buffer1.update(1, buffer1.getLong(1) + buffer2.getLong(1))
  }
  //计算操作结果
  override def evaluate(buffer: Row): Any = {
    buffer.getLong(0) / buffer.getLong(1)
  }
}

case class Student2(age: Long, name: String)
相关推荐
在未来等你7 分钟前
Kafka面试精讲 Day 15:跨数据中心复制与灾备
大数据·分布式·面试·kafka·消息队列
计算机编程-吉哥2 小时前
大数据毕业设计-基于Python的中文起点网小说数据分析平台(高分计算机毕业设计选题·定制开发·真正大数据)
大数据·hadoop·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
鸿乃江边鸟3 小时前
Flink中的 BinaryRowData 以及大小端
大数据·sql·flink
MicroTech20254 小时前
微算法科技(NASDAQ: MLGO)采用量子相位估计(QPE)方法,增强量子神经网络训练
大数据·算法·量子计算
b***25114 小时前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
Flink_China4 小时前
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
大数据·flink
jiedaodezhuti6 小时前
Flink Checkpoint失败问题分析与解决方案
大数据·flink
海豚调度6 小时前
(二)一文读懂数仓设计的核心规范:从层次、类型到生命周期
大数据·数仓·技术规范
在未来等你6 小时前
Elasticsearch面试精讲 Day 15:索引别名与零停机更新
大数据·分布式·elasticsearch·搜索引擎·面试
IT研究室7 小时前
大数据毕业设计选题推荐-基于大数据的国内旅游景点游客数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata