python 图论最短路径

在图论中,有许多算法可以用来求解最短路径问题,其中最著名的算法之一是Dijkstra算法。Dijkstra算法用于求解从一个顶点到其他所有顶点的最短路径,它适用于有向无环图(DAG)或无负权边的图。

cpp 复制代码
import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}  # 初始化所有节点到起始点的距离为无穷大
    distances[start] = 0  # 起始点到自身的距离为0
    pq = [(0, start)]  # 优先队列,用于存储节点的距禧和节点的值
    while pq:
        current_distance, current_node = heapq.heappop(pq)  # 从优先队列中取出当前距禧最小的节点
        if current_distance > distances[current_node]:  # 如果当前距离已经大于最短距离,则跳过
            continue
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances

# 测试示例
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'C': 1, 'D': 3},
    'C': {'A': 2, 'B': 1, 'D': 6},
    'D': {'B': 3, 'C': 6}
}
start_node = 'A'
shortest_distances = dijkstra(graph, start_node)
print(f"从节点 {start_node} 到其他所有节点的最短距离为:")
for node, distance in shortest_distances.items():
    print(f"节点 {node}: {distance}")

在上面的示例中,dijkstra函数接受一个图(以字典形式表示)和一个起始节点作为参数,然后使用Dijkstra算法来计算从起始节点到其他所有节点的最短距离。最终返回一个包含最短距离的字典。

相关推荐
jingling5553 分钟前
面试版-前端开发核心知识
开发语言·前端·javascript·vue.js·面试·前端框架
拾光拾趣录7 分钟前
CSS 深入解析:提升网页样式技巧与常见问题解决方案
前端·css
莫空00008 分钟前
深入理解JavaScript属性描述符:从数据属性到存取器属性
前端·面试
guojl9 分钟前
深度剖析Kafka读写机制
前端
FogLetter10 分钟前
图片懒加载:让网页飞起来的魔法技巧 ✨
前端·javascript·css
Mxuan10 分钟前
vscode webview 插件开发(精装篇)
前端
Mxuan11 分钟前
vscode webview 插件开发(交付篇)
前端
Mxuan13 分钟前
vscode 插件与 electron 应用跳转网页进行登录的实践
前端
拾光拾趣录13 分钟前
JavaScript 加载对浏览器渲染的影响
前端·javascript·浏览器
Codebee13 分钟前
OneCode图表配置速查手册
大数据·前端·数据可视化