python 图论最短路径

在图论中,有许多算法可以用来求解最短路径问题,其中最著名的算法之一是Dijkstra算法。Dijkstra算法用于求解从一个顶点到其他所有顶点的最短路径,它适用于有向无环图(DAG)或无负权边的图。

cpp 复制代码
import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}  # 初始化所有节点到起始点的距离为无穷大
    distances[start] = 0  # 起始点到自身的距离为0
    pq = [(0, start)]  # 优先队列,用于存储节点的距禧和节点的值
    while pq:
        current_distance, current_node = heapq.heappop(pq)  # 从优先队列中取出当前距禧最小的节点
        if current_distance > distances[current_node]:  # 如果当前距离已经大于最短距离,则跳过
            continue
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances

# 测试示例
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'C': 1, 'D': 3},
    'C': {'A': 2, 'B': 1, 'D': 6},
    'D': {'B': 3, 'C': 6}
}
start_node = 'A'
shortest_distances = dijkstra(graph, start_node)
print(f"从节点 {start_node} 到其他所有节点的最短距离为:")
for node, distance in shortest_distances.items():
    print(f"节点 {node}: {distance}")

在上面的示例中,dijkstra函数接受一个图(以字典形式表示)和一个起始节点作为参数,然后使用Dijkstra算法来计算从起始节点到其他所有节点的最短距离。最终返回一个包含最短距离的字典。

相关推荐
b***74886 分钟前
前端正在进入“超级融合时代”:从单一技术栈到体验、架构与智能的全维度进化
前端·架构
白杨SEO营销10 分钟前
白杨SEO:看“20步:从0-1做项目的笨办法”来学习如何选一个项目做及经验分享
前端·学习
l木本I28 分钟前
uv 技术详解
人工智能·python·深度学习·机器学习·uv
宁大小白41 分钟前
pythonstudy Day31
python·机器学习
AY呀43 分钟前
# 🌟 JavaScript原型与原型链终极指南:从Function到Object的完整闭环解析 ,深入理解JavaScript原型系统核心
前端·javascript·面试
用户4346621531344 分钟前
无废话之 useState、useRef、useReducer 的使用场景与选择指南
前端
GinoWi44 分钟前
HTML标签 - 表格标签
前端
码是生活1 小时前
老板:能不能别手动复制路由了?我:写个脚本自动扫描
前端·node.js
小皮虾1 小时前
护航隐私!小程序纯前端“证件加水印”:OffscreenCanvas 全屏平铺实战
前端·javascript·微信小程序
chushiyunen1 小时前
未设置X-XSS-Protection响应头安全漏洞
前端·xss