python 图论最短路径

在图论中,有许多算法可以用来求解最短路径问题,其中最著名的算法之一是Dijkstra算法。Dijkstra算法用于求解从一个顶点到其他所有顶点的最短路径,它适用于有向无环图(DAG)或无负权边的图。

cpp 复制代码
import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}  # 初始化所有节点到起始点的距离为无穷大
    distances[start] = 0  # 起始点到自身的距离为0
    pq = [(0, start)]  # 优先队列,用于存储节点的距禧和节点的值
    while pq:
        current_distance, current_node = heapq.heappop(pq)  # 从优先队列中取出当前距禧最小的节点
        if current_distance > distances[current_node]:  # 如果当前距离已经大于最短距离,则跳过
            continue
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances

# 测试示例
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'C': 1, 'D': 3},
    'C': {'A': 2, 'B': 1, 'D': 6},
    'D': {'B': 3, 'C': 6}
}
start_node = 'A'
shortest_distances = dijkstra(graph, start_node)
print(f"从节点 {start_node} 到其他所有节点的最短距离为:")
for node, distance in shortest_distances.items():
    print(f"节点 {node}: {distance}")

在上面的示例中,dijkstra函数接受一个图(以字典形式表示)和一个起始节点作为参数,然后使用Dijkstra算法来计算从起始节点到其他所有节点的最短距离。最终返回一个包含最短距离的字典。

相关推荐
lecepin25 分钟前
AI Coding 资讯 2025-09-17
前端·javascript·面试
IT_陈寒27 分钟前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
树上有只程序猿1 小时前
终于有人把数据库讲明白了
前端
猩兵哥哥1 小时前
前端面向对象设计原则运用 - 策略模式
前端·javascript·vue.js
司宸1 小时前
Prompt设计实战指南:三大模板与进阶技巧
前端
RoyLin1 小时前
TypeScript设计模式:抽象工厂模式
前端·后端·typescript
华仔啊1 小时前
Vue3+CSS 实现的 3D 卡片动画,让你的网页瞬间高大上
前端·css
江城开朗的豌豆1 小时前
解密React虚拟DOM:我的高效渲染秘诀 🚀
前端·javascript·react.js
数据智能老司机1 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构