python 图论最短路径

在图论中,有许多算法可以用来求解最短路径问题,其中最著名的算法之一是Dijkstra算法。Dijkstra算法用于求解从一个顶点到其他所有顶点的最短路径,它适用于有向无环图(DAG)或无负权边的图。

cpp 复制代码
import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}  # 初始化所有节点到起始点的距离为无穷大
    distances[start] = 0  # 起始点到自身的距离为0
    pq = [(0, start)]  # 优先队列,用于存储节点的距禧和节点的值
    while pq:
        current_distance, current_node = heapq.heappop(pq)  # 从优先队列中取出当前距禧最小的节点
        if current_distance > distances[current_node]:  # 如果当前距离已经大于最短距离,则跳过
            continue
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances

# 测试示例
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'C': 1, 'D': 3},
    'C': {'A': 2, 'B': 1, 'D': 6},
    'D': {'B': 3, 'C': 6}
}
start_node = 'A'
shortest_distances = dijkstra(graph, start_node)
print(f"从节点 {start_node} 到其他所有节点的最短距离为:")
for node, distance in shortest_distances.items():
    print(f"节点 {node}: {distance}")

在上面的示例中,dijkstra函数接受一个图(以字典形式表示)和一个起始节点作为参数,然后使用Dijkstra算法来计算从起始节点到其他所有节点的最短距离。最终返回一个包含最短距离的字典。

相关推荐
西猫雷婶1 分钟前
python学opencv|读取图像(四十三)使用cv2.bitwise_and()函数实现图像按位与运算
开发语言·python·opencv
qwe3526337 分钟前
自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
开发语言·python
呦呦鹿鸣Rzh25 分钟前
Web前端开发
前端
人生无根蒂,飘如陌上尘25 分钟前
pycharm踩坑(1)
ide·python·pycharm
I"ll carry you1 小时前
【Django教程】用户管理系统
python·django
cuber膜拜2 小时前
jupyter使用 Token 认证登录
ide·python·jupyter
会说法语的猪2 小时前
uniapp使用uni.navigateBack返回页面时携带参数到上个页面
前端·uni-app
张登杰踩3 小时前
pytorch2.5实例教程
pytorch·python
codists3 小时前
《CPython Internals》阅读笔记:p353-p355
python
Change is good3 小时前
selenium定位元素的方法
python·xpath定位