python 图论最短路径

在图论中,有许多算法可以用来求解最短路径问题,其中最著名的算法之一是Dijkstra算法。Dijkstra算法用于求解从一个顶点到其他所有顶点的最短路径,它适用于有向无环图(DAG)或无负权边的图。

cpp 复制代码
import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}  # 初始化所有节点到起始点的距离为无穷大
    distances[start] = 0  # 起始点到自身的距离为0
    pq = [(0, start)]  # 优先队列,用于存储节点的距禧和节点的值
    while pq:
        current_distance, current_node = heapq.heappop(pq)  # 从优先队列中取出当前距禧最小的节点
        if current_distance > distances[current_node]:  # 如果当前距离已经大于最短距离,则跳过
            continue
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances

# 测试示例
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'C': 1, 'D': 3},
    'C': {'A': 2, 'B': 1, 'D': 6},
    'D': {'B': 3, 'C': 6}
}
start_node = 'A'
shortest_distances = dijkstra(graph, start_node)
print(f"从节点 {start_node} 到其他所有节点的最短距离为:")
for node, distance in shortest_distances.items():
    print(f"节点 {node}: {distance}")

在上面的示例中,dijkstra函数接受一个图(以字典形式表示)和一个起始节点作为参数,然后使用Dijkstra算法来计算从起始节点到其他所有节点的最短距离。最终返回一个包含最短距离的字典。

相关推荐
pepedd8644 分钟前
浅谈js拷贝问题-解决拷贝数据难题
前端·javascript·trae
@大迁世界6 分钟前
useCallback 的陷阱:当 React Hooks 反而拖了后腿
前端·javascript·react.js·前端框架·ecmascript
跟橙姐学代码7 分钟前
学Python别死记硬背,这份“编程生活化笔记”让你少走三年弯路
前端·python
前端缘梦7 分钟前
深入理解 Vue 中的虚拟 DOM:原理与实战价值
前端·vue.js·面试
Fantastic_sj7 分钟前
React 19 核心特性
前端·react.js·前端框架
VaJoy8 分钟前
Cocos Creator Shader 入门 ⒂ —— 自定义后处理管线
前端·cocos creator
小高0079 分钟前
📌React 路由超详解(2025 版):从 0 到 1 再到 100,一篇彻底吃透
前端·javascript·react.js
Data_Adventure13 分钟前
Java 与 TypeScript 的“同名方法”之争:重载机制大起底
前端·typescript
summer77715 分钟前
GIS三维可视化-Cesium
前端·javascript·数据可视化
HWL567918 分钟前
pnpm(Performant npm)的安装
前端·vue.js·npm·node.js