python 图论最短路径

在图论中,有许多算法可以用来求解最短路径问题,其中最著名的算法之一是Dijkstra算法。Dijkstra算法用于求解从一个顶点到其他所有顶点的最短路径,它适用于有向无环图(DAG)或无负权边的图。

cpp 复制代码
import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}  # 初始化所有节点到起始点的距离为无穷大
    distances[start] = 0  # 起始点到自身的距离为0
    pq = [(0, start)]  # 优先队列,用于存储节点的距禧和节点的值
    while pq:
        current_distance, current_node = heapq.heappop(pq)  # 从优先队列中取出当前距禧最小的节点
        if current_distance > distances[current_node]:  # 如果当前距离已经大于最短距离,则跳过
            continue
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances

# 测试示例
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'C': 1, 'D': 3},
    'C': {'A': 2, 'B': 1, 'D': 6},
    'D': {'B': 3, 'C': 6}
}
start_node = 'A'
shortest_distances = dijkstra(graph, start_node)
print(f"从节点 {start_node} 到其他所有节点的最短距离为:")
for node, distance in shortest_distances.items():
    print(f"节点 {node}: {distance}")

在上面的示例中,dijkstra函数接受一个图(以字典形式表示)和一个起始节点作为参数,然后使用Dijkstra算法来计算从起始节点到其他所有节点的最短距离。最终返回一个包含最短距离的字典。

相关推荐
爱生活的苏苏10 分钟前
vue生成二维码图片+文字说明
前端·vue.js
拉不动的猪13 分钟前
安卓和ios小程序开发中的兼容性问题举例
前端·javascript·面试
炫彩@之星18 分钟前
Chrome书签的导出与导入:步骤图
前端·chrome
码界奇点20 分钟前
Python Flask文件处理与异常处理实战指南
开发语言·python·自然语言处理·flask·python3.11
浠寒AI25 分钟前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
贩卖纯净水.29 分钟前
浏览器兼容-polyfill-本地服务-优化
开发语言·前端·javascript
前端百草阁35 分钟前
从npm库 Vue 组件到独立SDK:打包与 CDN 引入的最佳实践
前端·vue.js·npm
夏日米米茶36 分钟前
Windows系统下npm报错node-gyp configure got “gyp ERR“解决方法
前端·windows·npm
且白1 小时前
vsCode使用本地低版本node启动配置文件
前端·vue.js·vscode·编辑器
程序研1 小时前
一、ES6-let声明变量【解刨分析最详细】
前端·javascript·es6