python 图论最短路径

在图论中,有许多算法可以用来求解最短路径问题,其中最著名的算法之一是Dijkstra算法。Dijkstra算法用于求解从一个顶点到其他所有顶点的最短路径,它适用于有向无环图(DAG)或无负权边的图。

cpp 复制代码
import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}  # 初始化所有节点到起始点的距离为无穷大
    distances[start] = 0  # 起始点到自身的距离为0
    pq = [(0, start)]  # 优先队列,用于存储节点的距禧和节点的值
    while pq:
        current_distance, current_node = heapq.heappop(pq)  # 从优先队列中取出当前距禧最小的节点
        if current_distance > distances[current_node]:  # 如果当前距离已经大于最短距离,则跳过
            continue
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances

# 测试示例
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'C': 1, 'D': 3},
    'C': {'A': 2, 'B': 1, 'D': 6},
    'D': {'B': 3, 'C': 6}
}
start_node = 'A'
shortest_distances = dijkstra(graph, start_node)
print(f"从节点 {start_node} 到其他所有节点的最短距离为:")
for node, distance in shortest_distances.items():
    print(f"节点 {node}: {distance}")

在上面的示例中,dijkstra函数接受一个图(以字典形式表示)和一个起始节点作为参数,然后使用Dijkstra算法来计算从起始节点到其他所有节点的最短距离。最终返回一个包含最短距离的字典。

相关推荐
指尖时光.几秒前
【前端进阶】01 重识HTML,掌握页面基本结构和加载过程
前端·html
前端御书房3 分钟前
Pinia 3.0 正式发布:全面拥抱 Vue 3 生态,升级指南与实战教程
前端·javascript·vue.js
JNU freshman11 分钟前
图论 之 迪斯科特拉算法求解最短路径
算法·图论
NoneCoder19 分钟前
JavaScript系列(84)--前端工程化概述
前端·javascript·状态模式
魔道不误砍柴功22 分钟前
Java中的Stream API:从入门到实战
java·windows·python
晚安72025 分钟前
idea添加web工程
java·前端·intellij-idea
xinghuitunan27 分钟前
时间转换(acwing)c/c++/java/python
java·c语言·c++·python
旅僧1 小时前
代码随想录-- 第一天图论 --- 岛屿的数量
算法·深度优先·图论
tekin1 小时前
Python 高级数据结构操作全解析:从理论到实践
数据结构·python·集合set·高级数据结构·集合操作·队列操作·堆操作
关关钧1 小时前
【R语言】绘图
开发语言·python·r语言