python 图论最短路径

在图论中,有许多算法可以用来求解最短路径问题,其中最著名的算法之一是Dijkstra算法。Dijkstra算法用于求解从一个顶点到其他所有顶点的最短路径,它适用于有向无环图(DAG)或无负权边的图。

cpp 复制代码
import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}  # 初始化所有节点到起始点的距离为无穷大
    distances[start] = 0  # 起始点到自身的距离为0
    pq = [(0, start)]  # 优先队列,用于存储节点的距禧和节点的值
    while pq:
        current_distance, current_node = heapq.heappop(pq)  # 从优先队列中取出当前距禧最小的节点
        if current_distance > distances[current_node]:  # 如果当前距离已经大于最短距离,则跳过
            continue
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return distances

# 测试示例
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'C': 1, 'D': 3},
    'C': {'A': 2, 'B': 1, 'D': 6},
    'D': {'B': 3, 'C': 6}
}
start_node = 'A'
shortest_distances = dijkstra(graph, start_node)
print(f"从节点 {start_node} 到其他所有节点的最短距离为:")
for node, distance in shortest_distances.items():
    print(f"节点 {node}: {distance}")

在上面的示例中,dijkstra函数接受一个图(以字典形式表示)和一个起始节点作为参数,然后使用Dijkstra算法来计算从起始节点到其他所有节点的最短距离。最终返回一个包含最短距离的字典。

相关推荐
Jagger_7 分钟前
Cursor + Apifox MCP:告别手动复制接口,AI 助你高效完成接口文档开发
前端
K2I-10 分钟前
UCI中Steel Plates Faults不平衡数据集处理
python
蓑笠翁00110 分钟前
Django REST Framework 全面指南:从模型到完整API接口开发
后端·python·django
IT_陈寒23 分钟前
Redis性能优化:5个被低估的配置项让你的QPS提升50%
前端·人工智能·后端
Hilaku30 分钟前
重新思考CSS Reset:normalize.css vs reset.css vs remedy.css,在2025年该如何选?
前端·css·代码规范
感谢地心引力42 分钟前
【Python】基于 PyQt6 和 Conda 的 PyInstaller 打包工具
数据库·python·conda·pyqt·pyinstaller
袁煦丞43 分钟前
一图看懂Docker管理 Portainer:cpoar内网穿透实验室第652个成功挑战
前端·程序员·远程工作
右子1 小时前
微信小程序开发“闭坑”指南
前端·javascript·微信小程序
入秋1 小时前
Three.js后期处理实战:噪点 景深 以及色彩调整
前端·javascript·three.js
Asort1 小时前
JavaScript设计模式(七)——桥接模式:解耦抽象与实现的优雅之道
前端·javascript·设计模式