42、Flink 关于窗口状态大小的考量

关于状态大小的考量

窗口可以被定义在很长的时间段上(比如几天、几周或几个月)并且积累下很大的状态,当估算窗口计算的储存需求时,注意如下:

  • Flink 会为一个元素在它所属的每一个窗口中都创建一个副本。 因此,一个元素在滚动窗口的设置中只会存在一个副本(一个元素仅属于一个窗口,除非它迟到了)。 与之相反,一个元素可能会被拷贝到多个滑动窗口中,因此设置一个大小为一天、滑动距离为一秒的滑动窗口可能不是个好想法。
  • ReduceFunctionAggregateFunction 可以极大地减少储存需求,因为他们会就地聚合到达的元素, 且每个窗口仅储存一个值,而使用 ProcessWindowFunction 需要累积窗口中所有的元素。
  • 使用 Evictor 可以避免预聚合, 因为窗口中的所有数据必须先经过 evictor 才能进行计算。
相关推荐
ask_baidu1 天前
监控Source端Pg对Flink CDC的影响
java·大数据·postgresql·flink
早日退休!!!1 天前
Roofline模型核心原理:延迟、吞吐与并发的底层逻辑
大数据·网络·数据库
说私域1 天前
基于定制开发AI智能名片商城小程序的运营创新与资金效率提升研究
大数据·人工智能·小程序
edisao1 天前
二。星链真正危险的地方,不在天上,而在网络底层
大数据·网络·人工智能·python·科技·机器学习
Python_Study20251 天前
TOB机械制造企业获客困境与技术解决方案:从传统模式到数字化营销的架构升级
大数据·人工智能·架构
Gofarlic_OMS1 天前
如何将MATLAB网络并发许可证闲置率降至10%以下
大数据·运维·服务器·开发语言·人工智能·matlab·制造
行业探路者1 天前
提升产品宣传效果的二维码应用新趋势
大数据·人工智能·学习·二维码·产品介绍
humors2211 天前
倪海厦讲解眼睛
大数据·程序人生
edisao1 天前
四。SpaceX、网络化与未来的跨越:低成本、高频次的真正威胁
大数据·开发语言·人工智能·科技·php