42、Flink 关于窗口状态大小的考量

关于状态大小的考量

窗口可以被定义在很长的时间段上(比如几天、几周或几个月)并且积累下很大的状态,当估算窗口计算的储存需求时,注意如下:

  • Flink 会为一个元素在它所属的每一个窗口中都创建一个副本。 因此,一个元素在滚动窗口的设置中只会存在一个副本(一个元素仅属于一个窗口,除非它迟到了)。 与之相反,一个元素可能会被拷贝到多个滑动窗口中,因此设置一个大小为一天、滑动距离为一秒的滑动窗口可能不是个好想法。
  • ReduceFunctionAggregateFunction 可以极大地减少储存需求,因为他们会就地聚合到达的元素, 且每个窗口仅储存一个值,而使用 ProcessWindowFunction 需要累积窗口中所有的元素。
  • 使用 Evictor 可以避免预聚合, 因为窗口中的所有数据必须先经过 evictor 才能进行计算。
相关推荐
zxsz_com_cn1 小时前
设备健康管理诊断报告生成:工业智能化的“决策引擎”与效率革命
大数据
FPGA小迷弟6 小时前
ChatGPT回答用AI怎么怎么赚钱
大数据·人工智能
AllData公司负责人6 小时前
实时开发平台(Streampark)--Flink SQL功能演示
大数据·前端·架构·flink·开源
小坏讲微服务8 小时前
MaxWell中基本使用原理 完整使用 (第一章)
大数据·数据库·hadoop·sqoop·1024程序员节·maxwell
勇往直前plus10 小时前
ElasticSearch详解(篇一)
大数据·elasticsearch·jenkins
一只小青团13 小时前
Hadoop之HDFS
大数据·hadoop·分布式
ITVV13 小时前
hadoop-3.4.1 单机伪部署
大数据·linux·hadoop
小杜谈数13 小时前
企业BI建议--数据治理平台
大数据
谅望者14 小时前
数据分析笔记07:Python编程语言介绍
大数据·数据库·笔记·python·数据挖掘·数据分析
中国国际健康产业博览会17 小时前
2026第35届中国国际健康产业博览会探索健康与科技的完美结合!
大数据·人工智能