42、Flink 关于窗口状态大小的考量

关于状态大小的考量

窗口可以被定义在很长的时间段上(比如几天、几周或几个月)并且积累下很大的状态,当估算窗口计算的储存需求时,注意如下:

  • Flink 会为一个元素在它所属的每一个窗口中都创建一个副本。 因此,一个元素在滚动窗口的设置中只会存在一个副本(一个元素仅属于一个窗口,除非它迟到了)。 与之相反,一个元素可能会被拷贝到多个滑动窗口中,因此设置一个大小为一天、滑动距离为一秒的滑动窗口可能不是个好想法。
  • ReduceFunctionAggregateFunction 可以极大地减少储存需求,因为他们会就地聚合到达的元素, 且每个窗口仅储存一个值,而使用 ProcessWindowFunction 需要累积窗口中所有的元素。
  • 使用 Evictor 可以避免预聚合, 因为窗口中的所有数据必须先经过 evictor 才能进行计算。
相关推荐
阿里云大数据AI技术10 小时前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx35215 小时前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康19 小时前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术1 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工2 天前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5