42、Flink 关于窗口状态大小的考量

关于状态大小的考量

窗口可以被定义在很长的时间段上(比如几天、几周或几个月)并且积累下很大的状态,当估算窗口计算的储存需求时,注意如下:

  • Flink 会为一个元素在它所属的每一个窗口中都创建一个副本。 因此,一个元素在滚动窗口的设置中只会存在一个副本(一个元素仅属于一个窗口,除非它迟到了)。 与之相反,一个元素可能会被拷贝到多个滑动窗口中,因此设置一个大小为一天、滑动距离为一秒的滑动窗口可能不是个好想法。
  • ReduceFunctionAggregateFunction 可以极大地减少储存需求,因为他们会就地聚合到达的元素, 且每个窗口仅储存一个值,而使用 ProcessWindowFunction 需要累积窗口中所有的元素。
  • 使用 Evictor 可以避免预聚合, 因为窗口中的所有数据必须先经过 evictor 才能进行计算。
相关推荐
semantist@语校1 天前
第二十篇|SAMU教育学院的教育数据剖析:制度阈值、能力矩阵与升学网络
大数据·数据库·人工智能·百度·语言模型·矩阵·prompt
Dobby_051 天前
【Hadoop】Yarn:Hadoop 生态的资源操作系统
大数据·hadoop·分布式·yarn
数智顾问1 天前
基于Hadoop进程的分布式计算任务调度与优化实践——深入理解分布式计算引擎的核心机制
大数据
笨蛋少年派1 天前
安装Hadoop中遇到的一些问题和解决
大数据·hadoop·分布式
在未来等你1 天前
Kafka面试精讲 Day 18:磁盘IO与网络优化
大数据·分布式·面试·kafka·消息队列
大视码垛机1 天前
速度与安全双突破:大视码垛机重构工业自动化新范式
大数据·数据库·人工智能·机器人·自动化·制造
梓仁沐白1 天前
hadoop单机伪分布环境配置
大数据·hadoop·分布式
欧阳方超1 天前
Spark(1):不依赖Hadoop搭建Spark环境
大数据·hadoop·spark
过尽漉雪千山1 天前
Flink1.17.0集群的搭建
java·大数据·linux·flink·centos