NLP(18)--大模型发展(2)

前言

仅记录学习过程,有问题欢迎讨论

Transformer结构:

LLM的结构变化:

Muti-head 共享:

  • Q继续切割为muti-head,但是K,V少切,比如切为2个,然后复制到n个muti-head
  • 减少参数量,加速训练

attention结构改动:

  • self-attention和feedforward并行计算(bert为顺序计算)
    不算主流

归一化层位置变化:

  • 在attention之前(pre norm),在feedforward之后(正常为 attention->++±>layer->FFN-->++±->layer)

归一化函数变化:layerNorm 改为 RMSNorm

  • 主流为norm层提前到attention层之前

激活函数变化

  • swish:两个线性层 gated

LLama2模型结构:

  • transformer Block:
    RMSNorm-->Liner-->q*k(T) *V -->softmax-->Liner-->RMSNorm-->swish-->Liner
    计算qk带上位置编码

MOE架构:

  • 在feed forward中有多个类型的前馈层,根据分类的结果来选择,每个前馈层都是一个专家

位置编码:

  • 因为transformer的输入是token,而不是序列,所以需要位置编码来表示token之间的相对位置
  • 正弦、余弦编码:每个字按公式计算位置维度信息,但是不能学习,得到position encoding+word embedding
  • bert 自带可训练的位置编码 position embedding;但是无法外推,最大文本长度是多少就是多少(512)
  • ROPE相对(旋转)位置编码;
    在计算某个词的emb时,映射其之前的位置emb信息(Xm,Xn,m-n)
    可以外推,也无需训练
  • Alibi位置编码;
    在QK中 加上位置矩阵m

总结:对于文本类任务,位置信息是重要的

可学习的位置编码缺点在于没有长度外推性

相对位置编码不需要学习,有一定的长度外推性,但是相对位置编码具有天然的远程衰减性

目前的主流是ROPE和Alibi两种相对位置编码

多模态:
常见:图像、音频、视频、文本
罕见:3D模型,神经信号,气味
输入到输出是不同的模态
要点:文本、图像如何编码;二者如何交互

flamingo:qkv ,其中Q为文本,KV为图像(KV决定输出),所以计算文本和图像之前的相关性,在attention中交互

LLava:文本和图像emb拼接 走类似llama的流程,但是没有多头机制,本质上还是self attention

cv基础:

图像=矩阵 使用RGB 3通道叠加展示色彩

视频就是多个图像组成的张量

Diffuse Model: sora背后的技术

diffusion思想:随机生成一副噪音图像,持续的进行有条件的去噪,直到显示出有意义的图像(类似于对石头雕像)

Denoise:使用Noise predictor 预测噪声(输入输出都是矩阵),

然后去噪就是:噪声图像-噪声

贴一个测试图:

PS:

LLaMA 3 引入了 分组查询注意力(Grouped Query Attention, GQA) 作为其注意力机制的一部分,而 LLaMA 2 使用的是标准的多头注意力(Multi-Head Attention, MHA)。GQA 可能通过不同的方式组织和处理查询(Queries),从而优化了注意力计算过程,提高了模型的推理效率,同时保持或增强了模型的表现力。

相关推荐
东临碣石822 分钟前
【重磅AI论文】DeepSeek-R1:通过强化学习激励大语言模型(LLMs)的推理能力
人工智能·深度学习·语言模型
涛涛讲AI1 小时前
扣子平台音频功能:让声音也能“智能”起来
人工智能·音视频·工作流·智能体·ai智能体·ai应用
霍格沃兹测试开发学社测试人社区1 小时前
人工智能在音频、视觉、多模态领域的应用
软件测试·人工智能·测试开发·自动化·音视频
herosunly2 小时前
2024:人工智能大模型的璀璨年代
人工智能·大模型·年度总结·博客之星
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
呆呆珝2 小时前
RKNN_C++版本-YOLOV5
c++·人工智能·嵌入式硬件·yolo
笔触狂放2 小时前
第一章 语音识别概述
人工智能·python·机器学习·语音识别
ZzYH222 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
格林威2 小时前
BroadCom-RDMA博通网卡如何进行驱动安装和设置使得对应网口具有RDMA功能以适配RDMA相机
人工智能·数码相机·opencv·计算机视觉·c#
程序员阿龙2 小时前
【精选】基于数据挖掘的招聘信息分析与市场需求预测系统 职位分析、求职者趋势分析 职位匹配、人才趋势、市场需求分析数据挖掘技术 职位需求分析、人才市场趋势预测
人工智能·数据挖掘·数据分析与可视化·数据挖掘技术·人才市场预测·招聘信息分析·在线招聘平台