python中的线程并行

文章目录

  • [1. 单线程](#1. 单线程)
  • [2. 线程池ThreadPoolExecutor](#2. 线程池ThreadPoolExecutor)

1. 单线程

现在有1154张图片需要顺时针旋转后保存到本地,一般使用循环1154次处理,具体代码如下所示,img_paths中存储1154个图片路径,该代码段耗时约用97ms。

python 复制代码
t1=time.time()
for imgpath in img_paths:
    img=cv2.imread(imgpath,0)
    img=cv2.rotate(img,cv2.ROTATE_90_CLOCKWISE)

    info=imgpath.split("/")
    parent,filename=info[-2],info[-1]
    filename=parent+"_"+filename.split(".")[0].zfill(5)+".jpg"
    dst_save_path=os.path.dirname(imgpath).replace(f"{sub}","result/")+filename
    cv2.imwrite(dst_save_path,img)
t2=time.time()
print(t2-t1)

可以看到CPU运行状态,只有一个在运行:

2. 线程池ThreadPoolExecutor

对于这种没有数据交换的任务,可以使用多线程。python中有很多多线程、多进程的库,这里试试线程池ThreadPoolExecutor。

这个库核心有两个:

  • with ThreadPoolExecutor(max_workers=batch_size) as executor:创建一个上下文管理的执行器,并制定线程池中线程个数;
  • executor.map(process_image, batch):process_image是执行的函数,接受一个路径,batch是储存多个路径的列表,大小等于小于执行器的max_workers。这个方法会为batch中的每个图像路径启动一个线程(最多同时运行max_workers数量的线程),并在每个线程中调用之前定义的process_image函数处理对应的图像。map方法会等待所有线程完成后再继续下一轮循环,确保每个批次内的图像处理是并行且同步完成的。

下方的代码耗时约37ms

python 复制代码
import cv2
import os
from concurrent.futures import ThreadPoolExecutor

def process_image(imgpath):
    # 读取并旋转图像
    img = cv2.imread(imgpath, 0)
    img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)

    # 分割路径以获取父目录和文件名
    info = imgpath.split("/")
    parent, filename = info[-2], info[-1]
    
    # 重命名文件
    base_name = filename.split(".")[0]
    new_filename = f"{parent}_{base_name.zfill(5)}.jpg"
    
    # 构建保存路径
    dst_save_path = os.path.dirname(imgpath).replace("sub", "result/") + new_filename
    
    # 保存处理后的图像
    cv2.imwrite(dst_save_path, img)

def batch_process_images(img_paths, batch_size=15):
    with ThreadPoolExecutor(max_workers=batch_size) as executor:
        for i in range(0, len(img_paths), batch_size):
            # 每次处理batch_size个图像路径
            batch = img_paths[i:i+batch_size]
            executor.map(process_image, batch)

# 假设img_paths是包含所有图像路径的列表
img_paths = [...]  # 这里填充实际的图像路径列表
batch_process_images(img_paths)

可以看到,15个cpu都被调用起来了

相关推荐
lsx202406几秒前
SVN 检出操作详解
开发语言
DREAM依旧4 分钟前
本地微调的Ollama模型部署到Dify平台上
人工智能·python
小陈phd5 分钟前
langGraph从入门到精通(九)——基于LangGraph构建具备多工具调用与自动化摘要能力的智能 Agent
人工智能·python·langchain
一晌小贪欢5 分钟前
Python 对象的“Excel 之旅”:使用 openpyxl 高效读写与封装实战
开发语言·python·excel·表格·openpyxl·python办公·读取表格
【赫兹威客】浩哥7 分钟前
【赫兹威客】Python解释器部署教程
python
赵八斤7 分钟前
java 项目中配置多个数据源
java·开发语言·数据库
代码or搬砖11 分钟前
Prompt(提示词工程)
人工智能·python·prompt
txinyu的博客15 分钟前
解析muduo源码之 StringPiece.h
开发语言·网络·c++
浅念-16 分钟前
C语言——单链表
c语言·开发语言·数据结构·经验分享·笔记·算法·leetcode
喵手17 分钟前
Python爬虫零基础入门【第二章:网页基础·第3节】接口数据基础:JSON 是什么?分页是什么?
爬虫·python·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·接口数据基础·爬虫json