数据清洗(ETL)案例实操

文章目录

  • 数据清洗(ETL)概述
  • 案例需求和分析
  • 代码实现和结果分析

数据清洗(ETL)概述

"ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL一词较常用在数据仓库中,但其对象并不限于数据仓库。

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

案例需求和分析

有一个日志数据集,我们要去除日志中字段个数小于等于11的日志。

部分数据集:

我们期望输出的数据每行字段长度都大于11,所以需要在Map阶段对输入的数据根据规则进行过滤清洗。

代码实现和结果分析

java 复制代码
package etl;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {
    public static void main(String[] args) throws Exception {

     // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[] { "D:/input/inputlog.txt", "D:\\hadoop\\output" };

        // 1 获取job信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 加载jar包
        job.setJarByClass(WebLogDriver.class);

        // 3 关联map
        job.setMapperClass(WebLogMapper.class);

        //4设置map的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        //5 设置最终输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 6取消reduce阶段,设置reducetask个数为0
        job.setNumReduceTasks(0);

        // 7 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        //8 提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}
java 复制代码
package etl;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class WebLogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //获取一行
        String line = value.toString();

        //ETL
        boolean result = parseLog(line,context);

        if (!result){
            return;
        }

        //写出
        context.write(value,NullWritable.get());
    }

    private boolean parseLog(String line, Context context) {
        String[] fields = line.split(" ");
        if (fields.length>11){
            return true;
        }else {
            return  false;
        }
    }
}

输出结果:


可以发现数据清洗后少了很多行,这就把不符合要求的数据去除掉了。

`

相关推荐
二二孚日1 小时前
自用华为ICT云赛道Big Data第四章知识点-Flink流批一体分布式实时处理引擎
大数据·华为
xufwind2 小时前
spark standlone 集群离线安装
大数据·分布式·spark
AI数据皮皮侠3 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
DeepSeek大模型官方教程4 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
大数据CLUB5 小时前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark
Edingbrugh.南空5 小时前
Hadoop高可用集群搭建
大数据·hadoop·分布式
智慧化智能化数字化方案6 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
武子康6 小时前
大数据-33 HBase 整体架构 HMaster HRegion
大数据·后端·hbase
诗旸的技术记录与分享20 小时前
Flink-1.19.0源码详解-番外补充3-StreamGraph图
大数据·flink
资讯分享周20 小时前
Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
大数据·gpt