数据清洗(ETL)案例实操

文章目录

  • 数据清洗(ETL)概述
  • 案例需求和分析
  • 代码实现和结果分析

数据清洗(ETL)概述

"ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL一词较常用在数据仓库中,但其对象并不限于数据仓库。

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

案例需求和分析

有一个日志数据集,我们要去除日志中字段个数小于等于11的日志。

部分数据集:

我们期望输出的数据每行字段长度都大于11,所以需要在Map阶段对输入的数据根据规则进行过滤清洗。

代码实现和结果分析

java 复制代码
package etl;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {
    public static void main(String[] args) throws Exception {

     // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[] { "D:/input/inputlog.txt", "D:\\hadoop\\output" };

        // 1 获取job信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 加载jar包
        job.setJarByClass(WebLogDriver.class);

        // 3 关联map
        job.setMapperClass(WebLogMapper.class);

        //4设置map的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        //5 设置最终输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 6取消reduce阶段,设置reducetask个数为0
        job.setNumReduceTasks(0);

        // 7 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        //8 提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}
java 复制代码
package etl;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class WebLogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //获取一行
        String line = value.toString();

        //ETL
        boolean result = parseLog(line,context);

        if (!result){
            return;
        }

        //写出
        context.write(value,NullWritable.get());
    }

    private boolean parseLog(String line, Context context) {
        String[] fields = line.split(" ");
        if (fields.length>11){
            return true;
        }else {
            return  false;
        }
    }
}

输出结果:


可以发现数据清洗后少了很多行,这就把不符合要求的数据去除掉了。

`

相关推荐
zuozewei1 小时前
随笔之TDengine基准测试示例
大数据·时序数据库·tdengine
数据要素X4 小时前
【数据架构10】数字政府架构篇
大数据·运维·数据库·人工智能·架构
ApacheSeaTunnel5 小时前
从日志到告警,带你用好 SeaTunnel 的事件监听能力
大数据·数据集成·seatunnel·技术分享
智海观潮6 小时前
DeepSeek在大数据领域正掀起一场深刻的变革
大数据·ai·deepseek
陈煜的博客7 小时前
elasticSearch 增删改查 java api
java·大数据·elasticsearch
zskj_zhyl8 小时前
让科技之光,温暖银龄岁月——智绅科技“智慧养老进社区”星城国际站温情纪实
大数据·人工智能·科技·生活
wzy06238 小时前
基于 Hadoop 生态圈的数据仓库实践 —— OLAP 与数据可视化(三)
hadoop·impala
不辉放弃9 小时前
Spark的累加器(Accumulator)
大数据·数据库·spark
梦想养猫开书店9 小时前
36、spark-measure 源码修改用于数据质量监控
大数据·分布式·spark
不辉放弃9 小时前
Spark的宽窄依赖
大数据·数据库·pyspark