PaddleClas 指定gpu

在使用PaddleClas进行模型训练或预测时,如果您想要指定使用特定的GPU设备,可以通过CUDA_VISIBLE_DEVICES环境变量来设置。

在命令行中设置GPU的方法如下:

bash 复制代码
# 指定第0号GPU
export CUDA_VISIBLE_DEVICES=0
# 之后运行PaddleClas的命令,例如
python -u tools/train.py -c configs/quick_start/MobileNetV3_large_x0_5_pretrain.yml

在Python脚本中设置GPU的方法如下:

bash 复制代码
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'  # 指定第一个GPU
 
# 导入Paddle相关模块
import paddle
import paddle.fluid as fluid
 
# 设置Paddle的使用GPU
paddle.fluid.set_flags({'FLAGS_cudnn_deterministic': True})

请确保您的PaddlePaddle版本支持GPU,并且已经正确安装了对应的CUDA和cuDNN库。

相关推荐
星幻元宇VR4 小时前
5D动感影院,科技与沉浸式体验的完美融合
人工智能·科技·虚拟现实
WZGL12304 小时前
“十五五”发展展望:以社区为底座构建智慧康养服务
大数据·人工智能·物联网
阿杰学AI4 小时前
AI核心知识86——大语言模型之 Superalignment(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·超级对齐·superalignment·#ai安全
CV@CV5 小时前
拆解自动驾驶核心架构——感知、决策、控制三层逻辑详解
人工智能·机器学习·自动驾驶
海心焱5 小时前
从零开始构建 AI 插件生态:深挖 MCP 如何打破 LLM 与本地数据的连接壁垒
jvm·人工智能·oracle
阿杰学AI5 小时前
AI核心知识85——大语言模型之 RLAIF(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·aigc·rlaihf·基于ai反馈的强化学习
Coco恺撒5 小时前
【脑机接口】难在哪里,【人工智能】如何破局(2.研发篇)
人工智能·深度学习·开源·人机交互·脑机接口
kebijuelun5 小时前
ERNIE 5.0:统一自回归多模态与弹性训练
人工智能·算法·语言模型·transformer
Network_Engineer5 小时前
从零手写LSTM:从门控原理到PyTorch源码级实现
人工智能·pytorch·lstm
芝士爱知识a5 小时前
AlphaGBM 深度解析:下一代基于 AI 与蒙特卡洛的智能期权分析平台
数据结构·人工智能·python·股票·alphagbm·ai 驱动的智能期权分析·期权