Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

微调大模型可以像这样轻松...

Llama-factory

LLaMA-Factory 项目特色

  • 多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练和 ORPO 训练。
  • 多种精度:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
  • 先进算法:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
  • 实用技巧:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。

性能指标

与 ChatGLM 官方的 P-Tuning 微调相比,LLaMA Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。

  • Training Speed: 训练阶段每秒处理的样本数量。(批处理大小=4,截断长度=1024)
  • Rouge Score: 广告文案生成任务验证集上的 Rouge-2 分数。(批处理大小=4,截断长度=1024)
  • GPU Memory: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1,截断长度=1024)
  • 在 ChatGLM 的 P-Tuning 中采用 pre_seq_len=128,在 LLaMA Factory 的 LoRA 微调中采用 lora_rank=32。

更新日志

24/05/20\] 官网支持了 PaliGemma 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 gemma 模板进行微调使其获得对话能力。 \[24/05/18\] 官网支持了 KTO 偏好对齐算法。详细用法请参照 examples。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1794920670249881601/2ff35c1723cedce4443abe70ec44c143.webp) ![在这里插入图片描述](https://file.jishuzhan.net/article/1794920670249881601/589db163ea9ebbc649b949ca772cefc2.webp) \[24/05/14\] 官网支持了昇腾 NPU 设备的训练和推理。 ## 模型 ![在这里插入图片描述](https://file.jishuzhan.net/article/1794920670249881601/1a0efbaacc494614e999b90e765bd69e.webp) ![在这里插入图片描述](https://file.jishuzhan.net/article/1794920670249881601/7d6536702e21579489b4acc178dba1b9.webp) 默认模块应作为 --lora_target 参数的默认值,可使用 --lora_target all 参数指定全部模块以取得更好的效果。 对于所有"基座"(Base)模型,--template 参数可以是 default, alpaca, vicuna 等任意值。但"对话"(Instruct/Chat)模型请务必使用对应的模板。 项目所支持模型的完整列表: ```python from collections import OrderedDict, defaultdict from enum import Enum from typing import Dict, Optional CHOICES = ["A", "B", "C", "D"] DATA_CONFIG = "dataset_info.json" DEFAULT_MODULE = defaultdict(str) DEFAULT_TEMPLATE = defaultdict(str) FILEEXT2TYPE = { "arrow": "arrow", "csv": "csv", "json": "json", "jsonl": "json", "parquet": "parquet", "txt": "text", } IGNORE_INDEX = -100 IMAGE_TOKEN = "" LAYERNORM_NAMES = {"norm", "ln"} METHODS = ["full", "freeze", "lora"] MOD_SUPPORTED_MODELS = ["bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"] PEFT_METHODS = ["lora"] RUNNING_LOG = "running_log.txt" SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"] SUPPORTED_MODELS = OrderedDict() TRAINER_CONFIG = "trainer_config.yaml" TRAINER_LOG = "trainer_log.jsonl" TRAINING_STAGES = { "Supervised Fine-Tuning": "sft", "Reward Modeling": "rm", "PPO": "ppo", "DPO": "dpo", "KTO": "kto", "ORPO": "orpo", "Pre-Training": "pt", } STAGES_USE_PAIR_DATA = ["rm", "dpo", "orpo"] SUPPORTED_CLASS_FOR_S2ATTN = ["llama"] V_HEAD_WEIGHTS_NAME = "value_head.bin" V_HEAD_SAFE_WEIGHTS_NAME = "value_head.safetensors" VISION_MODELS = set() class DownloadSource(str, Enum): DEFAULT = "hf" MODELSCOPE = "ms" def register_model_group( models: Dict[str, Dict[DownloadSource, str]], module: Optional[str] = None, template: Optional[str] = None, vision: bool = False, ) -> None: prefix = None for name, path in models.items(): if prefix is None: prefix = name.split("-")[0] else: assert prefix == name.split("-")[0], "prefix should be identical." SUPPORTED_MODELS[name] = path if module is not None: DEFAULT_MODULE[prefix] = module if template is not None: DEFAULT_TEMPLATE[prefix] = template if vision: VISION_MODELS.add(prefix) register_model_group( models={ "Baichuan-7B-Base": { DownloadSource.DEFAULT: "baichuan-inc/Baichuan-7B", DownloadSource.MODELSCOPE: "baichuan-inc/baichuan-7B", }, "Baichuan-13B-Base": { DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Base", DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Base", }, "Baichuan-13B-Chat": { DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Chat", DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Chat", }, }, module="W_pack", template="baichuan", ) register_model_group( models={ "Baichuan2-7B-Base": { DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Base", DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Base", }, "Baichuan2-13B-Base": { DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Base", DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Base", }, "Baichuan2-7B-Chat": { DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Chat", DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Chat", }, "Baichuan2-13B-Chat": { DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Chat", DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Chat", }, }, module="W_pack", template="baichuan2", ) register_model_group( models={ "BLOOM-560M": { DownloadSource.DEFAULT: "bigscience/bloom-560m", DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-560m", }, "BLOOM-3B": { DownloadSource.DEFAULT: "bigscience/bloom-3b", DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-3b", }, "BLOOM-7B1": { DownloadSource.DEFAULT: "bigscience/bloom-7b1", DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-7b1", }, }, module="query_key_value", ) register_model_group( models={ "BLOOMZ-560M": { DownloadSource.DEFAULT: "bigscience/bloomz-560m", DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-560m", }, "BLOOMZ-3B": { DownloadSource.DEFAULT: "bigscience/bloomz-3b", DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-3b", }, "BLOOMZ-7B1-mt": { DownloadSource.DEFAULT: "bigscience/bloomz-7b1-mt", DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-7b1-mt", }, }, module="query_key_value", ) register_model_group( models={ "BlueLM-7B-Base": { DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Base", DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Base", }, "BlueLM-7B-Chat": { DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Chat", DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Chat", }, }, template="bluelm", ) register_model_group( models={ "Breeze-7B": { DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Base-v1_0", }, "Breeze-7B-Chat": { DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Instruct-v1_0", }, }, template="breeze", ) register_model_group( models={ "ChatGLM2-6B-Chat": { DownloadSource.DEFAULT: "THUDM/chatglm2-6b", DownloadSource.MODELSCOPE: "ZhipuAI/chatglm2-6b", } }, module="query_key_value", template="chatglm2", ) register_model_group( models={ "ChatGLM3-6B-Base": { DownloadSource.DEFAULT: "THUDM/chatglm3-6b-base", DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b-base", }, "ChatGLM3-6B-Chat": { DownloadSource.DEFAULT: "THUDM/chatglm3-6b", DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b", }, }, module="query_key_value", template="chatglm3", ) register_model_group( models={ "ChineseLLaMA2-1.3B": { DownloadSource.DEFAULT: "hfl/chinese-llama-2-1.3b", DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-1.3b", }, "ChineseLLaMA2-7B": { DownloadSource.DEFAULT: "hfl/chinese-llama-2-7b", DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-7b", }, "ChineseLLaMA2-13B": { DownloadSource.DEFAULT: "hfl/chinese-llama-2-13b", DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-13b", }, "ChineseLLaMA2-1.3B-Chat": { DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-1.3b", DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-1.3b", }, "ChineseLLaMA2-7B-Chat": { DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-7b", DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-7b", }, "ChineseLLaMA2-13B-Chat": { DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-13b", DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-13b", }, }, template="llama2_zh", ) register_model_group( models={ "CommandR-35B-Chat": { DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01", DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-v01", }, "CommandR-Plus-104B-Chat": { DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus", DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-plus", }, "CommandR-35B-4bit-Chat": { DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01-4bit", DownloadSource.MODELSCOPE: "mirror013/c4ai-command-r-v01-4bit", }, "CommandR-Plus-104B-4bit-Chat": { DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus-4bit", }, }, template="cohere", ) register_model_group( models={ "DBRX-132B-Base": { DownloadSource.DEFAULT: "databricks/dbrx-base", DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-base", }, "DBRX-132B-Chat": { DownloadSource.DEFAULT: "databricks/dbrx-instruct", DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-instruct", }, }, module="Wqkv", template="dbrx", ) register_model_group( models={ "DeepSeek-LLM-7B-Base": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-base", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-base", }, "DeepSeek-LLM-67B-Base": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-base", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-base", }, "DeepSeek-LLM-7B-Chat": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-chat", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-chat", }, "DeepSeek-LLM-67B-Chat": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-chat", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-chat", }, "DeepSeek-Math-7B-Base": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-base", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-base", }, "DeepSeek-Math-7B-Chat": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-instruct", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-instruct", }, "DeepSeek-MoE-16B-Base": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-base", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-base", }, "DeepSeek-MoE-16B-v2-Base": { DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Lite", }, "DeepSeek-MoE-236B-Base": { DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2", DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2", }, "DeepSeek-MoE-16B-Chat": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-chat", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-chat", }, "DeepSeek-MoE-16B-v2-Chat": { DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Lite-Chat", }, "DeepSeek-MoE-236B-Chat": { DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Chat", DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Chat", }, }, template="deepseek", ) register_model_group( models={ "DeepSeekCoder-6.7B-Base": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-base", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-base", }, "DeepSeekCoder-7B-Base": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-base-v1.5", }, "DeepSeekCoder-33B-Base": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-base", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-base", }, "DeepSeekCoder-6.7B-Chat": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-instruct", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-instruct", }, "DeepSeekCoder-7B-Chat": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-instruct-v1.5", }, "DeepSeekCoder-33B-Chat": { DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-instruct", DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-instruct", }, }, template="deepseekcoder", ) register_model_group( models={ "Falcon-7B": { DownloadSource.DEFAULT: "tiiuae/falcon-7b", DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b", }, "Falcon-11B": { DownloadSource.DEFAULT: "tiiuae/falcon-11B", }, "Falcon-40B": { DownloadSource.DEFAULT: "tiiuae/falcon-40b", DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b", }, "Falcon-180B": { DownloadSource.DEFAULT: "tiiuae/falcon-180b", DownloadSource.MODELSCOPE: "modelscope/falcon-180B", }, "Falcon-7B-Chat": { DownloadSource.DEFAULT: "tiiuae/falcon-7b-instruct", DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b-instruct", }, "Falcon-40B-Chat": { DownloadSource.DEFAULT: "tiiuae/falcon-40b-instruct", DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b-instruct", }, "Falcon-180B-Chat": { DownloadSource.DEFAULT: "tiiuae/falcon-180b-chat", DownloadSource.MODELSCOPE: "modelscope/falcon-180B-chat", }, }, module="query_key_value", template="falcon", ) register_model_group( models={ "Gemma-2B": { DownloadSource.DEFAULT: "google/gemma-2b", DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-2b", }, "Gemma-7B": { DownloadSource.DEFAULT: "google/gemma-7b", DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-2b-it", }, "Gemma-2B-Chat": { DownloadSource.DEFAULT: "google/gemma-2b-it", DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b", }, "Gemma-7B-Chat": { DownloadSource.DEFAULT: "google/gemma-7b-it", DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b-it", }, }, template="gemma", ) register_model_group( models={ "CodeGemma-2B": { DownloadSource.DEFAULT: "google/codegemma-1.1-2b", }, "CodeGemma-7B": { DownloadSource.DEFAULT: "google/codegemma-7b", }, "CodeGemma-7B-Chat": { DownloadSource.DEFAULT: "google/codegemma-1.1-7b-it", DownloadSource.MODELSCOPE: "AI-ModelScope/codegemma-7b-it", }, }, template="gemma", ) register_model_group( models={ "InternLM-7B": { DownloadSource.DEFAULT: "internlm/internlm-7b", DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-7b", }, "InternLM-20B": { DownloadSource.DEFAULT: "internlm/internlm-20b", DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-20b", }, "InternLM-7B-Chat": { DownloadSource.DEFAULT: "internlm/internlm-chat-7b", DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-7b", }, "InternLM-20B-Chat": { DownloadSource.DEFAULT: "internlm/internlm-chat-20b", DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-20b", }, }, template="intern", ) register_model_group( models={ "InternLM2-7B": { DownloadSource.DEFAULT: "internlm/internlm2-7b", DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-7b", }, "InternLM2-20B": { DownloadSource.DEFAULT: "internlm/internlm2-20b", DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-20b", }, "InternLM2-7B-Chat": { DownloadSource.DEFAULT: "internlm/internlm2-chat-7b", DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-7b", }, "InternLM2-20B-Chat": { DownloadSource.DEFAULT: "internlm/internlm2-chat-20b", DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-20b", }, }, module="wqkv", template="intern2", ) register_model_group( models={ "Jambda-v0.1": { DownloadSource.DEFAULT: "ai21labs/Jamba-v0.1", DownloadSource.MODELSCOPE: "AI-ModelScope/Jamba-v0.1", } }, ) register_model_group( models={ "LingoWhale-8B": { DownloadSource.DEFAULT: "deeplang-ai/LingoWhale-8B", DownloadSource.MODELSCOPE: "DeepLang/LingoWhale-8B", } }, module="qkv_proj", ) register_model_group( models={ "LLaMA-7B": { DownloadSource.DEFAULT: "huggyllama/llama-7b", DownloadSource.MODELSCOPE: "skyline2006/llama-7b", }, "LLaMA-13B": { DownloadSource.DEFAULT: "huggyllama/llama-13b", DownloadSource.MODELSCOPE: "skyline2006/llama-13b", }, "LLaMA-30B": { DownloadSource.DEFAULT: "huggyllama/llama-30b", DownloadSource.MODELSCOPE: "skyline2006/llama-30b", }, "LLaMA-65B": { DownloadSource.DEFAULT: "huggyllama/llama-65b", DownloadSource.MODELSCOPE: "skyline2006/llama-65b", }, } ) register_model_group( models={ "LLaMA2-7B": { DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-hf", DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-ms", }, "LLaMA2-13B": { DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-hf", DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-ms", }, "LLaMA2-70B": { DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-hf", DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-ms", }, "LLaMA2-7B-Chat": { DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-chat-hf", DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-chat-ms", }, "LLaMA2-13B-Chat": { DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-chat-hf", DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-chat-ms", }, "LLaMA2-70B-Chat": { DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-chat-hf", DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-chat-ms", }, }, template="llama2", ) register_model_group( models={ "LLaMA3-8B": { DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B", DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B", }, "LLaMA3-70B": { DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B", DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B", }, "LLaMA3-8B-Chat": { DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B-Instruct", DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B-Instruct", }, "LLaMA3-70B-Chat": { DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B-Instruct", DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B-Instruct", }, "LLaMA3-8B-Chinese-Chat": { DownloadSource.DEFAULT: "shenzhi-wang/Llama3-8B-Chinese-Chat", DownloadSource.MODELSCOPE: "LLM-Research/Llama3-8B-Chinese-Chat", }, "LLaMA3-70B-Chinese-Chat": { DownloadSource.DEFAULT: "shenzhi-wang/Llama3-70B-Chinese-Chat", }, }, template="llama3", ) register_model_group( models={ "LLaVA1.5-7B-Chat": { DownloadSource.DEFAULT: "llava-hf/llava-1.5-7b-hf", }, "LLaVA1.5-13B-Chat": { DownloadSource.DEFAULT: "llava-hf/llava-1.5-13b-hf", }, }, template="vicuna", vision=True, ) register_model_group( models={ "Mistral-7B-v0.1": { DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.1", DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.1", }, "Mistral-7B-v0.1-Chat": { DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1", DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1", }, "Mistral-7B-v0.2": { DownloadSource.DEFAULT: "alpindale/Mistral-7B-v0.2-hf", DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.2-hf", }, "Mistral-7B-v0.2-Chat": { DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2", DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.2", }, }, template="mistral", ) register_model_group( models={ "Mixtral-8x7B-v0.1": { DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1", DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-v0.1", }, "Mixtral-8x7B-v0.1-Chat": { DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1", DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1", }, "Mixtral-8x22B-v0.1": { DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-v0.1", DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x22B-v0.1", }, "Mixtral-8x22B-v0.1-Chat": { DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-Instruct-v0.1", }, }, template="mistral", ) register_model_group( models={ "OLMo-1B": { DownloadSource.DEFAULT: "allenai/OLMo-1B-hf", }, "OLMo-7B": { DownloadSource.DEFAULT: "allenai/OLMo-7B-hf", }, "OLMo-1.7-7B": { DownloadSource.DEFAULT: "allenai/OLMo-1.7-7B-hf", }, }, ) register_model_group( models={ "OpenChat3.5-7B-Chat": { DownloadSource.DEFAULT: "openchat/openchat-3.5-0106", DownloadSource.MODELSCOPE: "xcwzxcwz/openchat-3.5-0106", } }, template="openchat", ) register_model_group( models={ "Orion-14B-Base": { DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Base", DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Base", }, "Orion-14B-Chat": { DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat", DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat", }, "Orion-14B-Long-Chat": { DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-LongChat", DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-LongChat", }, "Orion-14B-RAG-Chat": { DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat-RAG", DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat-RAG", }, "Orion-14B-Plugin-Chat": { DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat-Plugin", DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat-Plugin", }, }, template="orion", ) register_model_group( models={ "PaliGemma-3B-pt-224": { DownloadSource.DEFAULT: "google/paligemma-3b-pt-224", }, "PaliGemma-3B-pt-448": { DownloadSource.DEFAULT: "google/paligemma-3b-pt-448", }, "PaliGemma-3B-pt-896": { DownloadSource.DEFAULT: "google/paligemma-3b-pt-896", }, "PaliGemma-3B-mix-224": { DownloadSource.DEFAULT: "google/paligemma-3b-mix-224", }, "PaliGemma-3B-mix-448": { DownloadSource.DEFAULT: "google/paligemma-3b-mix-448", }, }, vision=True, ) register_model_group( models={ "Phi-1.5-1.3B": { DownloadSource.DEFAULT: "microsoft/phi-1_5", DownloadSource.MODELSCOPE: "allspace/PHI_1-5", }, "Phi-2-2.7B": { DownloadSource.DEFAULT: "microsoft/phi-2", DownloadSource.MODELSCOPE: "AI-ModelScope/phi-2", }, } ) register_model_group( models={ "Phi3-3.8B-4k-Chat": { DownloadSource.DEFAULT: "microsoft/Phi-3-mini-4k-instruct", DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-4k-instruct", }, "Phi3-3.8B-128k-Chat": { DownloadSource.DEFAULT: "microsoft/Phi-3-mini-128k-instruct", DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-128k-instruct", }, }, module="qkv_proj", template="phi", ) register_model_group( models={ "Qwen-1.8B": { DownloadSource.DEFAULT: "Qwen/Qwen-1_8B", DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B", }, "Qwen-7B": { DownloadSource.DEFAULT: "Qwen/Qwen-7B", DownloadSource.MODELSCOPE: "qwen/Qwen-7B", }, "Qwen-14B": { DownloadSource.DEFAULT: "Qwen/Qwen-14B", DownloadSource.MODELSCOPE: "qwen/Qwen-14B", }, "Qwen-72B": { DownloadSource.DEFAULT: "Qwen/Qwen-72B", DownloadSource.MODELSCOPE: "qwen/Qwen-72B", }, "Qwen-1.8B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat", }, "Qwen-7B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat", }, "Qwen-14B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat", }, "Qwen-72B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat", }, "Qwen-1.8B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int8", }, "Qwen-1.8B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int4", DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int4", }, "Qwen-7B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int8", }, "Qwen-7B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int4", DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int4", }, "Qwen-14B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int8", }, "Qwen-14B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int4", DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int4", }, "Qwen-72B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int8", }, "Qwen-72B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int4", DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int4", }, }, module="c_attn", template="qwen", ) register_model_group( models={ "Qwen1.5-0.5B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B", }, "Qwen1.5-1.8B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B", }, "Qwen1.5-4B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B", }, "Qwen1.5-7B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B", }, "Qwen1.5-14B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B", }, "Qwen1.5-32B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B", }, "Qwen1.5-72B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B", }, "Qwen1.5-110B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B", }, "Qwen1.5-MoE-A2.7B": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B", }, "Qwen1.5-Code-7B": { DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B", DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B", }, "Qwen1.5-0.5B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat", }, "Qwen1.5-1.8B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat", }, "Qwen1.5-4B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat", }, "Qwen1.5-7B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat", }, "Qwen1.5-14B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat", }, "Qwen1.5-32B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat", }, "Qwen1.5-72B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat", }, "Qwen1.5-110B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat", }, "Qwen1.5-MoE-A2.7B-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat", }, "Qwen1.5-Code-7B-Chat": { DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat", DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat", }, "Qwen1.5-0.5B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8", }, "Qwen1.5-0.5B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-AWQ", }, "Qwen1.5-1.8B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8", }, "Qwen1.5-1.8B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-AWQ", }, "Qwen1.5-4B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-GPTQ-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-GPTQ-Int8", }, "Qwen1.5-4B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-AWQ", }, "Qwen1.5-7B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-GPTQ-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-GPTQ-Int8", }, "Qwen1.5-7B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-AWQ", }, "Qwen1.5-14B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-GPTQ-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-GPTQ-Int8", }, "Qwen1.5-14B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-AWQ", }, "Qwen1.5-32B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat-AWQ", }, "Qwen1.5-72B-int8-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-GPTQ-Int8", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-GPTQ-Int8", }, "Qwen1.5-72B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-AWQ", }, "Qwen1.5-110B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat-AWQ", }, "Qwen1.5-MoE-A2.7B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4", DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4", }, "Qwen1.5-Code-7B-int4-Chat": { DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat-AWQ", DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat-AWQ", }, }, template="qwen", ) register_model_group( models={ "SOLAR-10.7B": { DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-v1.0", }, "SOLAR-10.7B-Chat": { DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-Instruct-v1.0", DownloadSource.MODELSCOPE: "AI-ModelScope/SOLAR-10.7B-Instruct-v1.0", }, }, template="solar", ) register_model_group( models={ "Skywork-13B-Base": { DownloadSource.DEFAULT: "Skywork/Skywork-13B-base", DownloadSource.MODELSCOPE: "skywork/Skywork-13B-base", } } ) register_model_group( models={ "StarCoder2-3B": { DownloadSource.DEFAULT: "bigcode/starcoder2-3b", DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-3b", }, "StarCoder2-7B": { DownloadSource.DEFAULT: "bigcode/starcoder2-7b", DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-7b", }, "StarCoder2-15B": { DownloadSource.DEFAULT: "bigcode/starcoder2-15b", DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-15b", }, } ) register_model_group( models={ "Vicuna1.5-7B-Chat": { DownloadSource.DEFAULT: "lmsys/vicuna-7b-v1.5", DownloadSource.MODELSCOPE: "Xorbits/vicuna-7b-v1.5", }, "Vicuna1.5-13B-Chat": { DownloadSource.DEFAULT: "lmsys/vicuna-13b-v1.5", DownloadSource.MODELSCOPE: "Xorbits/vicuna-13b-v1.5", }, }, template="vicuna", ) register_model_group( models={ "XuanYuan-6B": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B", }, "XuanYuan-70B": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B", }, "XuanYuan-2-70B": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B", }, "XuanYuan-6B-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat", }, "XuanYuan-70B-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat", }, "XuanYuan-2-70B-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat", }, "XuanYuan-6B-int8-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit", }, "XuanYuan-6B-int4-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit", }, "XuanYuan-70B-int8-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit", }, "XuanYuan-70B-int4-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit", }, "XuanYuan-2-70B-int8-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit", }, "XuanYuan-2-70B-int4-Chat": { DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit", DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit", }, }, template="xuanyuan", ) register_model_group( models={ "XVERSE-7B": { DownloadSource.DEFAULT: "xverse/XVERSE-7B", DownloadSource.MODELSCOPE: "xverse/XVERSE-7B", }, "XVERSE-13B": { DownloadSource.DEFAULT: "xverse/XVERSE-13B", DownloadSource.MODELSCOPE: "xverse/XVERSE-13B", }, "XVERSE-65B": { DownloadSource.DEFAULT: "xverse/XVERSE-65B", DownloadSource.MODELSCOPE: "xverse/XVERSE-65B", }, "XVERSE-65B-2": { DownloadSource.DEFAULT: "xverse/XVERSE-65B-2", DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-2", }, "XVERSE-7B-Chat": { DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat", DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat", }, "XVERSE-13B-Chat": { DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat", DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat", }, "XVERSE-65B-Chat": { DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat", DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat", }, "XVERSE-MoE-A4.2B": { DownloadSource.DEFAULT: "xverse/XVERSE-MoE-A4.2B", DownloadSource.MODELSCOPE: "xverse/XVERSE-MoE-A4.2B", }, "XVERSE-7B-int8-Chat": { DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int8", DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int8", }, "XVERSE-7B-int4-Chat": { DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int4", DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int4", }, "XVERSE-13B-int8-Chat": { DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int8", DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int8", }, "XVERSE-13B-int4-Chat": { DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int4", DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int4", }, "XVERSE-65B-int4-Chat": { DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat-GPTQ-Int4", DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat-GPTQ-Int4", }, }, template="xverse", ) register_model_group( models={ "Yayi-7B": { DownloadSource.DEFAULT: "wenge-research/yayi-7b-llama2", DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-7b-llama2", }, "Yayi-13B": { DownloadSource.DEFAULT: "wenge-research/yayi-13b-llama2", DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-13b-llama2", }, }, template="yayi", ) register_model_group( models={ "Yi-6B": { DownloadSource.DEFAULT: "01-ai/Yi-6B", DownloadSource.MODELSCOPE: "01ai/Yi-6B", }, "Yi-9B": { DownloadSource.DEFAULT: "01-ai/Yi-9B", DownloadSource.MODELSCOPE: "01ai/Yi-9B", }, "Yi-34B": { DownloadSource.DEFAULT: "01-ai/Yi-34B", DownloadSource.MODELSCOPE: "01ai/Yi-34B", }, "Yi-6B-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat", }, "Yi-34B-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat", }, "Yi-6B-int8-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-8bits", DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-8bits", }, "Yi-6B-int4-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-4bits", DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-4bits", }, "Yi-34B-int8-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits", DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits", }, "Yi-34B-int4-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-4bits", DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-4bits", }, "Yi-1.5-6B": { DownloadSource.DEFAULT: "01-ai/Yi-1.5-6B", DownloadSource.MODELSCOPE: "01ai/Yi-1.5-6B", }, "Yi-1.5-9B": { DownloadSource.DEFAULT: "01-ai/Yi-1.5-9B", DownloadSource.MODELSCOPE: "01ai/Yi-1.5-9B", }, "Yi-1.5-34B": { DownloadSource.DEFAULT: "01-ai/Yi-1.5-34B", DownloadSource.MODELSCOPE: "01ai/Yi-1.5-34B", }, "Yi-1.5-6B-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-1.5-6B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-1.5-6B-Chat", }, "Yi-1.5-9B-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-1.5-9B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-1.5-9B-Chat", }, "Yi-1.5-34B-Chat": { DownloadSource.DEFAULT: "01-ai/Yi-1.5-34B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-1.5-34B-Chat", }, }, template="yi", ) register_model_group( models={ "YiVL-6B-Chat": { DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-6B-hf", }, "YiVL-34B-Chat": { DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-34B-hf", }, }, template="yi_vl", vision=True, ) register_model_group( models={ "Yuan2-2B-Chat": { DownloadSource.DEFAULT: "IEITYuan/Yuan2-2B-hf", DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-2B-hf", }, "Yuan2-51B-Chat": { DownloadSource.DEFAULT: "IEITYuan/Yuan2-51B-hf", DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-51B-hf", }, "Yuan2-102B-Chat": { DownloadSource.DEFAULT: "IEITYuan/Yuan2-102B-hf", DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-102B-hf", }, }, template="yuan", ) register_model_group( models={ "Zephyr-7B-Alpha-Chat": { DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-alpha", DownloadSource.MODELSCOPE: "AI-ModelScope/zephyr-7b-alpha", }, "Zephyr-7B-Beta-Chat": { DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-beta", DownloadSource.MODELSCOPE: "modelscope/zephyr-7b-beta", }, "Zephyr-141B-ORPO-Chat": { DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", }, }, template="zephyr", ) ``` 代码中提到的大型模型名称包括: 1. Baichuan-7B-Base 2. Baichuan-13B-Base 3. Baichuan-13B-Chat 4. Baichuan2-7B-Base 5. Baichuan2-13B-Base 6. Baichuan2-7B-Chat 7. Baichuan2-13B-Chat 8. BLOOM-560M 9. BLOOM-3B 10. BLOOM-7B1 11. BLOOMZ-560M 12. BLOOMZ-3B 13. BLOOMZ-7B1-mt 14. BlueLM-7B-Base 15. BlueLM-7B-Chat 16. Breeze-7B 17. Breeze-7B-Chat 18. ChatGLM2-6B-Chat 19. ChatGLM3-6B-Base 20. ChatGLM3-6B-Chat 21. ChineseLLaMA2-1.3B 22. ChineseLLaMA2-7B 23. ChineseLLaMA2-13B 24. ChineseLLaMA2-1.3B-Chat 25. ChineseLLaMA2-7B-Chat 26. ChineseLLaMA2-13B-Chat 27. CommandR-35B-Chat 28. CommandR-Plus-104B-Chat 29. CommandR-35B-4bit-Chat 30. CommandR-Plus-104B-4bit-Chat 31. DBRX-132B-Base 32. DBRX-132B-Chat 33. DeepSeek-LLM-7B-Base 34. DeepSeek-LLM-67B-Base 35. DeepSeek-LLM-7B-Chat 36. DeepSeek-LLM-67B-Chat 37. DeepSeek-Math-7B-Base 38. DeepSeek-Math-7B-Chat 39. DeepSeek-MoE-16B-Base 40. DeepSeek-MoE-16B-v2-Base 41. DeepSeek-MoE-236B-Base 42. DeepSeek-MoE-16B-Chat 43. DeepSeek-MoE-16B-v2-Chat 44. DeepSeek-MoE-236B-Chat 45. DeepSeekCoder-6.7B-Base 46. DeepSeekCoder-7B-Base 47. DeepSeekCoder-33B-Base 48. DeepSeekCoder-6.7B-Chat 49. DeepSeekCoder-7B-Chat 50. DeepSeekCoder-33B-Chat 51. Falcon-7B 52. Falcon-11B 53. Falcon-40B 54. Falcon-180B 55. Falcon-7B-Chat 56. Falcon-40B-Chat 57. Falcon-180B-Chat 58. Gemma-2B 59. Gemma-7B 60. Gemma-2B-Chat 61. Gemma-7B-Chat 62. CodeGemma-2B 63. CodeGemma-7B 64. CodeGemma-7B-Chat 65. InternLM-7B 66. InternLM-20B 67. InternLM-7B-Chat 68. InternLM-20B-Chat 69. InternLM2-7B 70. InternLM2-20B 71. InternLM2-7B-Chat 72. InternLM2-20B-Chat 73. Jambda-v0.1 74. LingoWhale-8B 75. LLaMA-7B 76. LLaMA-13B 77. LLaMA-30B 78. LLaMA-65B 79. LLaMA2-7B 80. LLaMA2-13B 81. LLaMA2-70B 82. LLaMA2-7B-Chat 83. LLaMA2-13B-Chat 84. LLaMA2-70B-Chat 85. LLaMA3-8B 86. LLaMA3-70B 87. LLaMA3-8B-Chat 88. LLaMA3-70B-Chat 89. LLaMA3-8B-Chinese-Chat 90. LLaMA3-70B-Chinese-Chat 91. LLaVA1.5-7B-Chat 92. LLaVA1.5-13B-Chat 93. Mistral-7B-v0.1 94. Mistral-7B-v0.1-Chat 95. Mistral-7B-v0.2 96. Mistral-7B-v0.2-Chat 97. Mixtral-8x7B-v0.1 98. Mixtral-8x7B-v0.1-Chat 99. Mixtral-8x22B-v0.1 100. Mixtral-8x22B-v0.1-Chat 101. OLMo-1B 102. OLMo-7B 103. OLMo-1.7-7B 104. OpenChat3.5-7B-Chat 105. Orion-14B-Base 106. Orion-14B-Chat 107. Orion-14B-Long-Chat 108. Orion-14B-RAG-Chat 109. Orion-14B-Plugin-Chat 110. PaliGemma-3B-pt-224 111. PaliGemma-3B-pt-448 112. PaliGemma-3B-pt-896 113. PaliGemma-3B-mix-224 114. PaliGemma-3B-mix-448 115. Phi-1.5-1.3B 116. Phi-2-2.7B 117. Phi3-3.8B-4k-Chat 118. Phi3-3.8B-128k-Chat 119. Qwen-1.8B 120. Qwen-7B 121. Qwen-14B 122. Qwen-72B 123. Qwen-1.8B-Chat 124. Qwen-7B-Chat 125. Qwen-14B-Chat 126. Qwen-72B-Chat 127. Qwen-1.8B-int8-Chat 128. Qwen-1.8B-int4-Chat 129. Qwen-7B-int8-Chat 130. Qwen-7B-int4-Chat 131. Qwen-14B-int8-Chat 132. Qwen-14B-int4-Chat 133. Qwen-72B-int8-Chat 134. Qwen-72B-int4-Chat 135. Qwen1.5-0.5B 136. Qwen1.5-1.8B 137. Qwen1.5-4B 138. Qwen1.5-7B 139. Qwen1.5-14B 140. Qwen1.5-32B 141. Qwen1.5-72B 142. Qwen1.5-110B 143. Qwen1.5-MoE-A2.7B 144. Qwen1.5-Code-7B 145. Qwen1.5-0.5B-Chat 146. Qwen1.5-1.8B-Chat 147. Qwen1.5-4B-Chat 148. Qwen1.5-7B-Chat 149. Qwen1.5-14B-Chat 150. Qwen1.5-32B-Chat 151. Qwen1.5-72B-Chat 152. Qwen1.5-110B-Chat 153. Qwen1.5-MoE-A2.7B-Chat 154. Qwen1.5-Code-7B-Chat 155. Qwen1.5-0.5B-int8-Chat 156. Qwen1.5-0.5B-int4-Chat 157. Qwen1.5-1.8B-int8-Chat 158. Qwen1.5-1.8B-int4-Chat 159. Qwen1.5-4B-int8-Chat 160. Qwen1.5-4B-int4-Chat 161. Qwen1.5-7B-int8-Chat 162. Qwen1.5-7B-int4-Chat 163. Qwen1.5-14B-int8-Chat 164. Qwen1.5-14B-int4-Chat 165. Qwen1.5-32B-int4-Chat 166. Qwen1.5-72B-int8-Chat 167. Qwen1.5-72B-int4-Chat 168. Qwen1.5-110B-int4-Chat 169. Qwen1.5-MoE-A2.7B-int4-Chat 170. Qwen1.5-Code-7B-int4-Chat 171. SOLAR-10.7B 172. SOLAR-10.7B-Chat 173. Skywork-13B-Base 174. StarCoder2-3B 175. StarCoder2-7B 176. StarCoder2-15B 177. Vicuna1.5-7B-Chat 178. Vicuna1.5-13B-Chat 179. XuanYuan-6B 180. XuanYuan-70B 181. XuanYuan-2-70B 182. XuanYuan-6B-Chat 183. XuanYuan-70B-Chat 184. XuanYuan-2-70B-Chat 185. XuanYuan-6B-int8-Chat 186. XuanYuan-6B-int4-Chat 187. XuanYuan-70B-int8-Chat 188. XuanYuan-70B-int4-Chat 189. XuanYuan-2-70B-int8-Chat 190. XuanYuan-2-70B-int4-Chat 191. XVERSE-7B 192. XVERSE-13B 193. XVERSE-65B 194. XVERSE-65B-2 195. XVERSE-7B-Chat 196. XVERSE-13B-Chat 197. XVERSE-65B-Chat 198. XVERSE-MoE-A4.2B 199. XVERSE-7B-int8-Chat 200. XVERSE-7B-int4-Chat 201. XVERSE-13B-int8-Chat 202. XVERSE-13B-int4-Chat 203. XVERSE-65B-int4-Chat 204. Yayi-7B 205. Yayi-13B 206. Yi-6B 207. Yi-9B 208. Yi-34B 209. Yi-6B-Chat 210. Yi-34B-Chat 211. Yi-6B-int8-Chat 212. Yi-6B-int4-Chat 213. Yi-34B-int8-Chat 214. Yi-34B-int4-Chat 215. Yi-1.5-6B 216. Yi-1.5-9B 217. Yi-1.5-34B 218. Yi-1.5-6B-Chat 219. Yi-1.5-9B-Chat 220. Yi-1.5-34B-Chat 221. YiVL-6B-Chat 222. YiVL-34B-Chat 223. Yuan2-2B-Chat 224. Yuan2-51B-Chat 225. Yuan2-102B-Chat 226. Zephyr-7B-Alpha-Chat 227. Zephyr-7B-Beta-Chat 228. Zephyr-141B-ORPO-Chat ## 大模型技术分享 ![在这里插入图片描述](https://file.jishuzhan.net/article/1794920670249881601/61ea3b79ec4da0956ee66d0858aa0d2c.webp) ![在这里插入图片描述](https://file.jishuzhan.net/article/1794920670249881601/ecdc0cf1cfc852581a9a3772099c80f2.webp) ![在这里插入图片描述](https://file.jishuzhan.net/article/1794920670249881601/e2677334749e4b8da966ac5637e54fb5.webp) ## 《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座 模块一:Generative AI 原理本质、技术内核及工程实践周期详解 模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战 模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统 模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战 模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战 模块六:LLM 大模型微调及模型 Quantization 技术及案例实战 模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶 模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战 模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战 模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 ## Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战 1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。 2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。 3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。 4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。 5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。 6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。 7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。 8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。 9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。 10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。 ## 解码Sora架构、技术及应用 一、为何Sora通往AGI道路的里程碑? 1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。 2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。 3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。 5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。 二、解码Sora架构原理 1,DiT (Diffusion Transformer)架构详解 2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的? 3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。 4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。 5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。 三、解码Sora关键技术解密 1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。 2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。 3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。 4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。 5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。 6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

相关推荐
闻道且行之15 天前
记录| Llama-Factory参数总结
llama·llama-factory
_Meilinger_18 天前
大模型微调|使用 LLaMA-Factory 微调 Llama3-8B-Chinese-Chat 完成知识问答任务
大模型·llm·微调·llama·大模型微调·llama-factory·unsloth
gz7seven23 天前
大模型学习笔记------Llama 3模型架构之RMS Norm与激活函数SwiGLU
llama·激活函数·归一化·llama3·swiglu·rms norm
学不会lostfound1 个月前
五、AIGC大模型_04LLaMA-Factory基础知识与SFT实战
lora·深度学习模型·自我认知·llama-factory·sft微调·aigc实战
喝不完一杯咖啡1 个月前
【AI时代】可视化训练模型工具LLaMA-Factory安装与使用
人工智能·llm·sft·llama·llama-factory
初窺門徑1 个月前
llama-factory部署微调方法(wsl-Ubuntu & Windows)
llama·大模型微调·llama-factory
浮华落定2 个月前
[开源]MaxKb+Ollama 构建RAG私有化知识库
rag·llama3·maxkb·deepseek
engchina2 个月前
使用LLaMA-Factory对AI进行认知的微调
人工智能·微调·llama·llama-factory
有小肚子的三眼桥墩2 个月前
从零安装 LLaMA-Factory 微调 Qwen 大模型成功及所有的坑
人工智能·llama·llama-factory
engchina2 个月前
如何使 LLaMA-Factory 支持 google/gemma-2-2b-jpn-it 的微调
llama-factory