Codeforces远古场 Longest Regular Bracket Sequence (动态规划)

Longest Regular Bracket Sequence

题面翻译

给出一个括号序列,求出最长合法子串和它的数量。

合法的定义:这个序列中左右括号匹配

题目描述

This is yet another problem dealing with regular bracket sequences.

We should remind you that a bracket sequence is called regular, if by inserting <<+>> and <<1>> into it we can get a correct mathematical expression. For example, sequences <<(())()>>, <<()>> and <<(()(()))>> are regular, while <<)(>>, <<(()>> and <<(()))(>> are not.

You are given a string of <<(>> and <<)>> characters. You are to find its longest substring that is a regular bracket sequence. You are to find the number of such substrings as well.

输入格式

The first line of the input file contains a non-empty string, consisting of <<(>> and <<)>> characters. Its length does not exceed 10\^{6} .

输出格式

Print the length of the longest substring that is a regular bracket sequence, and the number of such substrings. If there are no such substrings, write the only line containing "0 1".

样例 #1

样例输入 #1

复制代码
)((())))(()())

样例输出 #1

复制代码
6 2

样例 #2

样例输入 #2

复制代码
))(

样例输出 #2

复制代码
0 1

考虑这道题的DP方法。

不难想出,要用 f [ i ] f[i] f[i] 来表示前 i i i 段里面最长的合法括号序列,现在来考虑能够怎么DP。

合法的序列可以有以下两种情况:

  • ((())),也就是单个大括号
  • ()()(()),也就是多个括号

那么对于单个大括号当然就很好维护,他的长度就可以算为最右边的右括号的下表减去最左边的左括号的下表加1,在这种情况下不需要状态转移。

对于多个括号的情况,我们要考虑状态转移。

由于我们在维护段落的合理性的时候是通过栈来维护的,我们用以下变量来实现数组模拟栈stk[N]为栈本身 tt为栈顶,在检测到左括号的时候我们会压入他的下标,那么取出的时候一定是最左边的右括号先去对应最右边的左括号,知道堆中元素全部弹出。

那么我们可以每次检查一下f[stk[tt] - 1]是否有元素,如果有的话就说明了当前右括号对应的左括号的左边是有另一组合理括号段的,那么就加上他。

因为题目要求要记录数量,所以我们使用cnt数组进行各个段落的最长合理子段的数量记录。

那么最终的状态转移方程就是:++cnt[f[i] = i - stk[tt] + 1 + f[stk[tt--] - 1]]


CODE:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
#define endl '\n'

int stk[N];
int tt = -1;
int f[N];
int cnt[N];

int main(){
    string s;cin >> s;
    for(int i = 0;i < s.size();i++){
        if(s[i] == '(')stk[++tt] = i;
        else if(~tt) ++cnt[f[i] = i - stk[tt] + 1 + f[stk[tt--] - 1]];
    }
    cnt[0] = 1;
    for(int i = s.size();~i;i--){
        if(cnt[i]){
            cout << i << " " << cnt[i] << endl;
            return 0;
        }
    }
    return 0;
}
相关推荐
雾月5535 分钟前
LeetCode 1292 元素和小于等于阈值的正方形的最大边长
java·数据结构·算法·leetcode·职场和发展
知来者逆2 小时前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
阿让啊2 小时前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
এ᭄画画的北北2 小时前
力扣-160.相交链表
算法·leetcode·链表
爱研究的小陈3 小时前
Day 3:数学基础回顾——线性代数与概率论在AI中的核心作用
算法
渭雨轻尘_学习计算机ing3 小时前
二叉树的最大宽度计算
算法·面试
BB_CC_DD4 小时前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
梁下轻语的秋缘5 小时前
每日c/c++题 备战蓝桥杯 ([洛谷 P1226] 快速幂求模题解)
c++·算法·蓝桥杯
CODE_RabbitV5 小时前
【深度强化学习 DRL 快速实践】逆向强化学习算法 (IRL)
算法
mit6.8246 小时前
[贪心_7] 最优除法 | 跳跃游戏 II | 加油站
数据结构·算法·leetcode