代码随想录算法训练营第四十一天| 509. 斐波那契数 、70. 爬楼梯 、746. 使用最小花费爬楼梯

509. 斐波那契数

题目链接:509. 斐波那契数

文档讲解:代码随想录/斐波那契数

视频讲解:视频讲解-斐波那契数

状态:已完成(1遍)

解题过程

看到题目的第一想法

虽然看了卡哥的动态规划五部曲,但是看到题目之后还是不太会操作索性不要有自己多余的思考了,直接看视频讲解。

看完代码随想录之后的想法

用动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i]的定义为:第i个数的斐波那契数值是dp[i]

  2. 确定递推公式:dp[i] = dp[i - 1] + dp[i - 2];

  3. dp数组如何初始化:dp[0] = 0 、dp[1] = 1;

  4. 确定遍历顺序:从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的;

  5. 举例推导dp数组:

    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:0 1 1 2 3 5 8 13 21 34 55。

看了讲解手搓代码如下:

javascript 复制代码
/**
 * @param {number} n
 * @return {number}
 */
var fib = function(n) {
    let dp = [];
    dp[0] = 0,dp[1] = 1;
    for(let i = 2;i<=n;i++){
        dp[i] = dp[i-1] + dp[i-2];
    }
    return dp[n];
};

总结

这道题作为动态规划之所以简单,是因为递推公式、初始化、遍历顺序都已经由题目确定。


70. 爬楼梯

题目链接:70. 爬楼梯

文档讲解:代码随想录/爬楼梯

视频讲解:视频讲解-爬楼梯

状态:已完成(1遍)

解题过程

看到题目的第一想法

用动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i]的定义为:到第i层阶梯有dp[i]种方式能够来到;

  2. 确定递推公式:dp[i] = dp[i - 1] + dp[i - 2];

  3. dp数组如何初始化:dp[0] = 1 、dp[1] = 1、dp[2] = 2;

  4. 确定遍历顺序:从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的;

  5. 举例推导dp数组:

    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,dp数组应该是如下的数列: 1 1 2 3 5 8 13 21 34 55。

手搓代码如下:

javascript 复制代码
/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function(n) {
    let dp = [1,1];
    for(let i =2;i<=n;i++){
        dp[i] = dp[i-1] + dp[i-2];
    }
    return dp[n];
};

提交成功!

看完代码随想录之后的想法

严格遵守对dp[i]的描述,直接没有i=0的时候。

讲解代码如下:

javascript 复制代码
/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function(n) {
    // dp[i] 为第 i 阶楼梯有多少种方法爬到楼顶
    // dp[i] = dp[i - 1] + dp[i - 2]
    let dp = [1 , 2]
    for(let i = 2; i < n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2]
    }
    return dp[n - 1]
};

总结

一开始我就往动态规划的思路上靠,感觉既然只有两种行走方式,那到dp[i]级阶梯的方式肯定就是他的下一级dp[i-1]和下两级dp[i-2],所以到这级阶梯的方式就是到下两级阶梯方式的和。


746. 使用最小花费爬楼梯

题目链接:746. 使用最小花费爬楼梯

文档讲解:代码随想录/使用最小花费爬楼梯

视频讲解:视频讲解-使用最小花费爬楼梯

状态:已完成(1遍)

解题过程

看到题目的第一想法

用动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i]的定义为:从第i层阶梯出发的最小花费dp[i]元;

  2. 确定递推公式:dp[i] = dp[i - 1] 和 dp[i - 2] 的最小值 + cost[i];

  3. dp数组如何初始化:dp[0] = cost[0] 、dp[1] =cost[1] ;

  4. 确定遍历顺序:从递归公式中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的;

  5. 举例推导dp数组:

    按照这个递推公式我们来推导一下,dp数组应该是如下的数列: 10 15 30 。

手搓代码如下:

javascript 复制代码
/**
 * @param {number[]} cost
 * @return {number}
 */
var minCostClimbingStairs = function(cost) {
    let dp = [cost[0],cost[1]];
    for(let i =2;i<cost.length;i++){
        dp[i] = Math.min(dp[i - 1],dp[i - 2]) + cost[i];
    }
    return Math.min(dp[cost.length-1],dp[cost.length-2]);
};

提交成功,没有问题。 我在求最后一级阶梯的时候就不用走for循环里了,直接比较从前两节阶梯哪个出发更便宜。

看完代码随想录之后的想法

卡尔哥用dp[i]表示到达第i节阶梯的最便宜花费,确实省事一点。

讲解代码如下:

javascript 复制代码
/**
 * @param {number[]} cost
 * @return {number}
 */
var minCostClimbingStairs = function(cost) {
  const dp = [0, 0]
  for (let i = 2; i <= cost.length; ++i) {
    dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
  }
  return dp[cost.length]
};

总结

今天的三道题还算简单,希望明后天可以撑住。

相关推荐
掘金安东尼1 小时前
Amazon Lambda + API Gateway 实战,无服务器架构入门
算法·架构
码流之上2 小时前
【一看就会一写就废 指间算法】设计电子表格 —— 哈希表、字符串处理
javascript·算法
快手技术4 小时前
快手提出端到端生成式搜索框架 OneSearch,让搜索“一步到位”!
算法
CoovallyAIHub1 天前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP1 天前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo1 天前
半开区间和开区间的两个二分模版
算法
moonlifesudo1 天前
300:最长递增子序列
算法
CoovallyAIHub1 天前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI2 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm