代码随想录算法训练营第四十一天| 509. 斐波那契数 、70. 爬楼梯 、746. 使用最小花费爬楼梯

509. 斐波那契数

题目链接:509. 斐波那契数

文档讲解:代码随想录/斐波那契数

视频讲解:视频讲解-斐波那契数

状态:已完成(1遍)

解题过程

看到题目的第一想法

虽然看了卡哥的动态规划五部曲,但是看到题目之后还是不太会操作索性不要有自己多余的思考了,直接看视频讲解。

看完代码随想录之后的想法

用动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i]的定义为:第i个数的斐波那契数值是dp[i]

  2. 确定递推公式:dp[i] = dp[i - 1] + dp[i - 2];

  3. dp数组如何初始化:dp[0] = 0 、dp[1] = 1;

  4. 确定遍历顺序:从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的;

  5. 举例推导dp数组:

    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:0 1 1 2 3 5 8 13 21 34 55。

看了讲解手搓代码如下:

javascript 复制代码
/**
 * @param {number} n
 * @return {number}
 */
var fib = function(n) {
    let dp = [];
    dp[0] = 0,dp[1] = 1;
    for(let i = 2;i<=n;i++){
        dp[i] = dp[i-1] + dp[i-2];
    }
    return dp[n];
};

总结

这道题作为动态规划之所以简单,是因为递推公式、初始化、遍历顺序都已经由题目确定。


70. 爬楼梯

题目链接:70. 爬楼梯

文档讲解:代码随想录/爬楼梯

视频讲解:视频讲解-爬楼梯

状态:已完成(1遍)

解题过程

看到题目的第一想法

用动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i]的定义为:到第i层阶梯有dp[i]种方式能够来到;

  2. 确定递推公式:dp[i] = dp[i - 1] + dp[i - 2];

  3. dp数组如何初始化:dp[0] = 1 、dp[1] = 1、dp[2] = 2;

  4. 确定遍历顺序:从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的;

  5. 举例推导dp数组:

    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,dp数组应该是如下的数列: 1 1 2 3 5 8 13 21 34 55。

手搓代码如下:

javascript 复制代码
/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function(n) {
    let dp = [1,1];
    for(let i =2;i<=n;i++){
        dp[i] = dp[i-1] + dp[i-2];
    }
    return dp[n];
};

提交成功!

看完代码随想录之后的想法

严格遵守对dp[i]的描述,直接没有i=0的时候。

讲解代码如下:

javascript 复制代码
/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function(n) {
    // dp[i] 为第 i 阶楼梯有多少种方法爬到楼顶
    // dp[i] = dp[i - 1] + dp[i - 2]
    let dp = [1 , 2]
    for(let i = 2; i < n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2]
    }
    return dp[n - 1]
};

总结

一开始我就往动态规划的思路上靠,感觉既然只有两种行走方式,那到dp[i]级阶梯的方式肯定就是他的下一级dp[i-1]和下两级dp[i-2],所以到这级阶梯的方式就是到下两级阶梯方式的和。


746. 使用最小花费爬楼梯

题目链接:746. 使用最小花费爬楼梯

文档讲解:代码随想录/使用最小花费爬楼梯

视频讲解:视频讲解-使用最小花费爬楼梯

状态:已完成(1遍)

解题过程

看到题目的第一想法

用动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i]的定义为:从第i层阶梯出发的最小花费dp[i]元;

  2. 确定递推公式:dp[i] = dp[i - 1] 和 dp[i - 2] 的最小值 + cost[i];

  3. dp数组如何初始化:dp[0] = cost[0] 、dp[1] =cost[1] ;

  4. 确定遍历顺序:从递归公式中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的;

  5. 举例推导dp数组:

    按照这个递推公式我们来推导一下,dp数组应该是如下的数列: 10 15 30 。

手搓代码如下:

javascript 复制代码
/**
 * @param {number[]} cost
 * @return {number}
 */
var minCostClimbingStairs = function(cost) {
    let dp = [cost[0],cost[1]];
    for(let i =2;i<cost.length;i++){
        dp[i] = Math.min(dp[i - 1],dp[i - 2]) + cost[i];
    }
    return Math.min(dp[cost.length-1],dp[cost.length-2]);
};

提交成功,没有问题。 我在求最后一级阶梯的时候就不用走for循环里了,直接比较从前两节阶梯哪个出发更便宜。

看完代码随想录之后的想法

卡尔哥用dp[i]表示到达第i节阶梯的最便宜花费,确实省事一点。

讲解代码如下:

javascript 复制代码
/**
 * @param {number[]} cost
 * @return {number}
 */
var minCostClimbingStairs = function(cost) {
  const dp = [0, 0]
  for (let i = 2; i <= cost.length; ++i) {
    dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
  }
  return dp[cost.length]
};

总结

今天的三道题还算简单,希望明后天可以撑住。

相关推荐
じ☆冷颜〃3 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
数据大魔方3 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
POLITE33 小时前
Leetcode 23. 合并 K 个升序链表 (Day 12)
算法·leetcode·链表
楚来客4 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
Echo_NGC22374 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
会员果汁4 小时前
leetcode-动态规划-买卖股票
算法·leetcode·动态规划
橘颂TA5 小时前
【剑斩OFFER】算法的暴力美学——二进制求和
算法·leetcode·哈希算法·散列表·结构与算法
地平线开发者6 小时前
征程 6 | cgroup sample
算法·自动驾驶
姓蔡小朋友7 小时前
算法-滑动窗口
算法