大模型额外篇章一:用huggingface的电影评论数据集情感分类训练模型

文章目录

一、介绍和准备

1)介绍

工具:huggingface

目的:情感分类

输入:电影评论

输出:标签 ['neg','pos']

数据源:https://huggingface.co/datasets/rotten_tomatoeshttps://hf-mirror.com/datasets

2)准备(安装依赖)

shell 复制代码
# pip安装
pip install transformers # 安装最新的版本
pip install transformers == 4.30 # 安装指定版本
# conda安装
conda install -c huggingface transformers  # 只4.0以后的版本

二、开始训练

  • 步骤
    1、指定训练集和数据集
    2、加载模型
    3、加载tokenizer(运行时自动下载)
    4、其它相关公共变量赋值(随机种子\标签集\标签转 token_id)
    5、处理数据集(模型接受的输入格式)
    6、定义数据规整器:训练时自动将数据拆分成Batch
    7、定义训练超参
    8、定义训练器,并开始训练
    9、开始训练

(这里之后是训练后的推理步骤)

10、加载训练后的模型进行推理

11、加载 checkpoint 并继续训练

  • 代码
python 复制代码
import datasets
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModel
from transformers import AutoModelForCausalLM
from transformers import TrainingArguments, Seq2SeqTrainingArguments
from transformers import Trainer, Seq2SeqTrainer
import transformers
from transformers import DataCollatorWithPadding
from transformers import TextGenerationPipeline
import torch
import numpy as np
import os, re
from tqdm import tqdm
import torch.nn as nn


#1、指定训练集和数据集
# 数据集名称(运行时下载)
DATASET_NAME = "rotten_tomatoes"
# 加载数据集
raw_datasets = load_dataset(DATASET_NAME)
# 训练集
raw_train_dataset = raw_datasets["train"]
# 验证集
raw_valid_dataset = raw_datasets["validation"]


#2、加载模型
# 模型名称
MODEL_NAME = "gpt2"
# 加载模型
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,trust_remote_code=True)


#3、加载tokenizer(运行时自动下载)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,trust_remote_code=True)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
tokenizer.pad_token_id = 0



#4、其它相关公共变量赋值
# 设置随机种子:同个种子的随机序列可复现
transformers.set_seed(42)
# 标签集
named_labels = ['neg','pos']
# 标签转 token_id
label_ids = [
    tokenizer(named_labels[i],add_special_tokens=False)["input_ids"][0]
    for i in range(len(named_labels))
]

#5、处理数据集(模型接受的输入格式)
MAX_LEN=32   #最大序列长度(输入+输出)
DATA_BODY_KEY = "text" # 数据集中的输入字段名
DATA_LABEL_KEY = "label" #数据集中输出字段名
# 定义数据处理函数,把原始数据转成input_ids, attention_mask, labels
def process_fn(examples):
    model_inputs = {
            "input_ids": [],
            "attention_mask": [],
            "labels": [],
        }
    for i in range(len(examples[DATA_BODY_KEY])):
        inputs = tokenizer(examples[DATA_BODY_KEY][i],add_special_tokens=False)
        label = label_ids[examples[DATA_LABEL_KEY][i]]
        input_ids = inputs["input_ids"] + [tokenizer.eos_token_id, label]

        raw_len = len(input_ids)
        input_len = len(inputs["input_ids"]) + 1

        if raw_len >= MAX_LEN:
            input_ids = input_ids[-MAX_LEN:]
            attention_mask = [1] * MAX_LEN
            labels = [-100]*(MAX_LEN - 1) + [label]
        else:
            input_ids = input_ids + [tokenizer.pad_token_id] * (MAX_LEN - raw_len)
            attention_mask = [1] * raw_len + [0] * (MAX_LEN - raw_len)
            labels = [-100]*input_len + [label] + [-100] * (MAX_LEN - raw_len)
        model_inputs["input_ids"].append(input_ids)                     #初始的纯数据
        model_inputs["attention_mask"].append(attention_mask)           #加0也就是pad成相等长度,方便矩阵计算
        model_inputs["labels"].append(labels)                           #-100一系列操作标识哪些部分token参与计算
    return model_inputs
# 处理训练数据集
tokenized_train_dataset = raw_train_dataset.map(
    process_fn,
    batched=True,
    remove_columns=raw_train_dataset.columns,
    desc="Running tokenizer on train dataset",
)
# 处理验证数据集
tokenized_valid_dataset = raw_valid_dataset.map(
    process_fn,
    batched=True,
    remove_columns=raw_valid_dataset.columns,
    desc="Running tokenizer on validation dataset",
)


# 6、定义数据规整器:训练时自动将数据拆分成Batch
collater = DataCollatorWithPadding(
    tokenizer=tokenizer, return_tensors="pt",
)


#7、定义训练超参
LR=2e-5         # 学习率
BATCH_SIZE=8    # Batch大小
INTERVAL=100    # 每多少步打一次 log / 做一次 eval
training_args = TrainingArguments(
    output_dir="./output",              # checkpoint保存路径
    evaluation_strategy="steps",        # 按步数计算eval频率
    overwrite_output_dir=True,
    num_train_epochs=1,                 # 训练epoch数
    per_device_train_batch_size=BATCH_SIZE,     # 每张卡的batch大小
    gradient_accumulation_steps=1,              # 累加几个step做一次参数更新
    per_device_eval_batch_size=BATCH_SIZE,      # evaluation batch size
    eval_steps=INTERVAL,                # 每N步eval一次
    logging_steps=INTERVAL,             # 每N步log一次
    save_steps=INTERVAL,                # 每N步保存一个checkpoint
    learning_rate=LR,                   # 学习率
)


#8、定义训练器,并开始训练
# 节省显存
model.gradient_checkpointing_enable()
trainer = Trainer(
    model=model, # 待训练模型
    args=training_args, # 训练参数
    data_collator=collater, # 数据校准器
    train_dataset=tokenized_train_dataset,  # 训练集
    eval_dataset=tokenized_valid_dataset,   # 验证集
    # compute_metrics=compute_metric,         # 计算自定义评估指标
)
# 开始训练
trainer.train()
相关推荐
OpenCSG9 分钟前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习
阿里云大数据AI技术12 分钟前
漫画说:为什么你的“增量计算”越跑越慢?——90%的实时数仓团队都踩过的坑,藏在这几格漫画里
大数据·人工智能
Gavin在路上19 分钟前
SpringAIAlibaba之上下文工程与GraphRunnerContext 深度解析(8)
人工智能
撬动未来的支点29 分钟前
【AI】光速理解YOLO框架
人工智能·yolo·计算机视觉
电商API_1800790524730 分钟前
批量获取电商商品数据的主流技术方法全解析
大数据·数据库·人工智能·数据分析·网络爬虫
学境思源AcademicIdeas38 分钟前
我在手机上部署了一个AI大模型,用它写完了论文初稿【附提示词】
人工智能·智能手机
week_泽42 分钟前
第1课:AI Agent是什么 - 学习笔记_1
人工智能·笔记·学习
kebijuelun43 分钟前
REAP the Experts:去掉 MoE 一半专家还能保持性能不变
人工智能·gpt·深度学习·语言模型·transformer
医工交叉实验工坊1 小时前
从零详解WGCNA分析
人工智能·机器学习
百万彩票中奖候选人1 小时前
在trae、qoder、Claude Code、Cursor等AI IDE中使用ui-ux-pro-max-skill
人工智能·ui·ux