transformer的特点

Transformers是一种用于处理序列数据的神经网络架构,最初由Vaswani等人在2017年提出,主要用于自然语言处理任务。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformers采用了一种全新的注意力机制,显著提高了模型的性能和训练效率。以下是Transformers的主要特点:

1. 自注意力机制(Self-Attention Mechanism)

Transformers的核心是自注意力机制,它允许模型在处理一个序列中的某个元素时,能够关注序列中所有其他元素。这种机制可以捕捉长距离的依赖关系,解决了传统RNN在处理长序列时的难题。

2. 并行计算

由于Transformers不依赖于序列顺序,它可以同时处理序列中的所有元素,从而支持高度并行化的计算。这使得训练速度显著加快,比传统RNN快很多。

3. 编码器-解码器架构(Encoder-Decoder Architecture)

Transformers最初是为序列到序列任务设计的,比如机器翻译。它由编码器和解码器两部分组成:

  • 编码器:处理输入序列,生成一组特征表示。
  • 解码器:根据编码器生成的特征表示和先前的输出,生成目标序列。

4. 多头注意力机制(Multi-Head Attention)

多头注意力机制通过并行的多个注意力头(attention heads),能够从不同的表示空间中学习到更多的信息。每个头独立地计算自注意力,然后将结果进行拼接,最后通过线性变换结合。这种机制增强了模型的表示能力。

5. 位置编码(Positional Encoding)

由于Transformers不具有内在的序列顺序信息,需要额外引入位置编码来表示序列中元素的位置。位置编码通过向输入向量中添加位置信息,使模型能够利用序列的顺序信息。

6. 无卷积无循环(No Convolutions or Recurrences)

Transformers完全基于注意力机制和全连接层,不使用任何卷积或循环结构。这使得模型能够更好地并行化处理数据,提升计算效率。

相关推荐
一只大侠的侠6 天前
DNN深度神经网络:结构、训练与优化全指南
人工智能·神经网络·dnn
2401_841495647 天前
【机器学习】深度神经网络(DNN)
人工智能·python·深度学习·神经网络·机器学习·dnn·深度神经网络
nwsuaf_huasir8 天前
适合一维信号时间序列分割与窗口检测的问题的深度神经网络架构
人工智能·神经网络·dnn
人工智能培训10 天前
深度学习—卷积神经网络(4)
人工智能·深度学习·神经网络·机器学习·cnn·dnn
hzp66611 天前
招牌红烧肉版-深度神经网络
人工智能·深度学习·神经网络·llm·aigc·dnn·反向传播
人工智能培训12 天前
深度学习—卷积神经网络(1)
人工智能·深度学习·神经网络·机器学习·cnn·知识图谱·dnn
Rabbit_QL12 天前
【深度学习原理】数值稳定性(一):为什么深度神经网络如此脆弱
人工智能·深度学习·dnn
小桥流水---人工智能16 天前
多模型统一导出 t-SNE 可视化数据的工程实践(1DCNN / DAN / DNN / DRN / Transformer)
人工智能·transformer·dnn
人工智能培训19 天前
DNN案例一步步构建深层神经网络(3)
人工智能·深度学习·神经网络·大模型·dnn·具身智能·智能体
人工智能培训20 天前
国内外知名大模型及应用
人工智能·深度学习·神经网络·大模型·dnn·ai大模型·具身智能