Pytorch-07 完整训练测试过程

要在PyTorch中使用GPU进行数据集的加载、模型的训练和最后模型的测试,需要将数据集和模型都移动到GPU上,并确保在训练和测试过程中都在GPU上进行计算。以下是一个完整的示例代码,展示了如何在PyTorch中使用GPU进行端到端的训练和测试:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 准备训练和测试数据,并将其移动到GPU
train_input = torch.randn(100, 10).to(device)
train_target = torch.randn(100, 1).to(device)
test_input = torch.randn(20, 10).to(device)
test_target = torch.randn(20, 1).to(device)

# 创建数据集和数据加载器
train_dataset = TensorDataset(train_input, train_target)
train_loader = DataLoader(train_dataset, batch_size=10, shuffle=True)

# 定义一个简单的神经网络模型,并将其移动到GPU
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(5, 1)

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x

model = SimpleModel().to(device)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)

# 训练模型
model.train()
for epoch in range(100):
    for input_data, target_data in train_loader:
        optimizer.zero_grad()
        output = model(input_data)
        loss = criterion(output, target_data)
        loss.backward()
        optimizer.step()

# 测试模型
model.eval()
with torch.no_grad():
    test_output = model(test_input)
    test_loss = criterion(test_output, test_target)
    print(f'Test Loss: {test_loss.item()}')

在这个示例中,我们首先检查GPU是否可用,并将训练和测试数据移动到GPU上。然后,我们创建了数据集和数据加载器,定义了神经网络模型,并将模型移动到GPU。在训练过程中,我们使用数据加载器加载数据进行训练;在测试过程中,我们使用model.eval()将模型切换为评估模式,并使用torch.no_grad()上下文管理器关闭梯度计算,以避免在测试过程中更新模型参数。最后,我们计算了模型在测试集上的损失。整个训练和测试过程都在GPU上进行,以加速计算和提高效率。

相关推荐
莽撞的大地瓜14 分钟前
88项专利、142项软件著作权 蜜度以自主知识产权构筑AI垂直能力平台
人工智能
觉醒大王17 分钟前
如何让综述自然引出你的理论框架?
论文阅读·深度学习·学习·自然语言处理·学习方法
Jack___Xue30 分钟前
AI大模型微调(一)------Deep Seek R1模型Lora微调训练
人工智能
Yngz_Miao1 小时前
【深度学习】交叉熵损失函数Cross-Entropy Loss
人工智能·深度学习·损失函数·交叉熵·ce
chenzhiyuan20181 小时前
BL450实测:YOLOv8在产线端能跑多快?
人工智能
一休哥助手1 小时前
2026年1月22日人工智能早间新闻
人工智能
良策金宝AI1 小时前
工程设计企业AI试用落地路径:从效率验证到知识沉淀
数据库·人工智能·知识图谱·ai助手·工程设计
奔袭的算法工程师1 小时前
CRN源码详细解析(4)-- 图像骨干网络之DepthNet和ViewAggregation
人工智能·pytorch·深度学习·目标检测·自动驾驶
cjqbg1 小时前
灵芽API:企业级大模型API聚合网关架构解析与成本效益对比
人工智能·架构·aigc·ai编程