基于文本来推荐相似酒店

基于文本来推荐相似酒店

查看数据集基本信息

python 复制代码
import pandas as pd
import numpy as np
from nltk.corpus import stopwords
from sklearn.metrics.pairwise import linear_kernel
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import random
import cufflinks
import cufflinks
from plotly.offline import iplot
python 复制代码
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df.head()

| | name | address | desc |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a...
python 复制代码
df.shape
复制代码
(152, 3)
python 复制代码
df['desc'][0]
复制代码
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."

查看酒店描述中主要介绍信息

python 复制代码
vec=CountVectorizer().fit(df['desc'])
python 复制代码
vec=CountVectorizer().fit(df['desc'])
bag_of_words=vec.transform(df['desc'])
sum_words=bag_of_words.sum(axis=0)
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
sum_words[1:10]
复制代码
[('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280)]
python 复制代码
bag_of_words=vec.transform(df['desc'])
bag_of_words.shape
复制代码
(152, 3200)
python 复制代码
bag_of_words.toarray()
复制代码
array([[0, 1, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 1, 0, 0]], dtype=int64)
python 复制代码
sum_words=bag_of_words.sum(axis=0)
sum_words
复制代码
matrix([[ 1, 11, 11, ...,  2,  6,  2]], dtype=int64)
python 复制代码
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
python 复制代码
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
python 复制代码
sum_words[1:10]
复制代码
[('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280)]

将以上信息整合成函数

python 复制代码
def get_top_n_words(corpus,n=None):
    vec=CountVectorizer().fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]
python 复制代码
common_words=get_top_n_words(df['desc'],20)
common_words
复制代码
[('the', 1258),
 ('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280),
 ('is', 271),
 ('at', 231),
 ('from', 224),
 ('for', 216),
 ('your', 186),
 ('or', 161),
 ('center', 151),
 ('are', 136),
 ('downtown', 133),
 ('on', 129)]
python 复制代码
df1=pd.DataFrame(common_words,columns=['desc','count'])
python 复制代码
common_words=get_top_n_words(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>    
python 复制代码
chart_info1=df1.groupby(['desc']).sum().sort_values('count',ascending=False)
python 复制代码
chart_info1.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>
python 复制代码
def get_any1_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(1,1)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]
python 复制代码
common_words=get_any1_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>
python 复制代码
def get_any2_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(2,2)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]

common_words=get_any2_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>
python 复制代码
def get_any3_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(3,3)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]

common_words=get_any3_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

描述的一些统计信息

python 复制代码
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df['desc'][0]
复制代码
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."
python 复制代码
df['word_count']=df['desc'].apply(   lambda x:len(str(x).split(' '))    )
df.head()                                    

| | name | address | desc | word_count |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... | 184 |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... | 152 |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... | 147 |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... | 151 |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a... 151
python 复制代码
df['word_count'].plot(kind='hist',bins=50)
复制代码
<AxesSubplot:ylabel='Frequency'>

文本处理

python 复制代码
sub_replace=re.compile('[^0-9a-z#-]')
python 复制代码
from nltk.corpus import stopwords
python 复制代码
stopwords=set(stopwords.words('english'))
python 复制代码
def clean_txt(text):
    text.lower()
    text=sub_replace.sub(' ',text)
    ''.join(    word   for word in text.split(' ')  if word not in stopwords               )
    return  text
python 复制代码
df['desc_clean']=df['desc'].apply(clean_txt)
python 复制代码
df['desc_clean'][0]
复制代码
' ocated on the southern tip of  ake  nion  the  ilton  arden  nn  eattle  owntown hotel is perfectly located for business and leisure    he neighborhood is home to numerous major international companies including  mazon   oogle and the  ill    elinda  ates  oundation    wealth of eclectic restaurants and bars make this area of  eattle one of the most sought out by locals and visitors   ur proximity to  ake  nion allows visitors to take in some of the  acific  orthwest s majestic scenery and enjoy outdoor activities like kayaking and sailing  over 2 000 sq  ft  of versatile space and a complimentary business center   tate-of-the-art     technology and our helpful staff will guarantee your conference  cocktail reception or wedding is a success   efresh in the sparkling saltwater pool  or energize with the latest equipment in the 24-hour fitness center   astefully decorated and flooded with natural light  our guest rooms and suites offer everything you need to relax and stay productive   nwind in the bar  and enjoy  merican cuisine for breakfast  lunch and dinner in our restaurant   he 24-hour  avilion  antry  stocks a variety of snacks  drinks and sundries '

相似度计算

python 复制代码
df.index
复制代码
RangeIndex(start=0, stop=152, step=1)
python 复制代码
df.head()

| | name | address | desc | word_count | desc_clean |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... | 184 | ocated on the southern tip of ake nion the... |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... | 152 | ocated in the city s vibrant core the herat... |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... | 147 | ocated in the heart of downtown eattle the ... |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... | 151 | hat s near our hotel downtown eattle locatio... |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a... 151 ituated amid incredible shopping and iconic a...
python 复制代码
df.set_index('name' ,inplace=True)
python 复制代码
df.index[:5]
复制代码
Index(['Hilton Garden Seattle Downtown', 'Sheraton Grand Seattle',
       'Crowne Plaza Seattle Downtown', 'Kimpton Hotel Monaco Seattle ',
       'The Westin Seattle'],
      dtype='object', name='name')
python 复制代码
tf=TfidfVectorizer(analyzer='word',ngram_range=(1,3),stop_words='english')#将原始文档集合转换为TF-IDF特性的矩阵。
tf
复制代码
TfidfVectorizer(ngram_range=(1, 3), stop_words='english')
python 复制代码
tfidf_martix=tf.fit_transform(df['desc_clean'])
tfidf_martix.shape
复制代码
(152, 27694)
python 复制代码
cosine_similarity=linear_kernel(tfidf_martix,tfidf_martix)
cosine_similarity.shape
复制代码
(152, 152)
python 复制代码
cosine_similarity[0]
复制代码
array([1.        , 0.01354605, 0.02855898, 0.00666729, 0.02915865,
       0.01258837, 0.0190937 , 0.0152567 , 0.00689703, 0.01852763,
       0.01241924, 0.00919602, 0.01189826, 0.01234794, 0.01200711,
       0.01596218, 0.00979221, 0.04374643, 0.01138524, 0.02334485,
       0.02358692, 0.00829121, 0.00620275, 0.01700472, 0.0191396 ,
       0.02340334, 0.03193292, 0.00678849, 0.02272962, 0.0176494 ,
       0.0125159 , 0.03702338, 0.01569165, 0.02001584, 0.03656467,
       0.03189017, 0.00644231, 0.01008181, 0.02428547, 0.03327365,
       0.01367507, 0.00827835, 0.01722986, 0.04135263, 0.03315194,
       0.01529834, 0.03568623, 0.01294482, 0.03480617, 0.01447235,
       0.02563783, 0.01650068, 0.03328324, 0.01562323, 0.02703264,
       0.01315504, 0.02248426, 0.02690816, 0.00565479, 0.02899467,
       0.02900863, 0.00971019, 0.0439659 , 0.03020971, 0.02166199,
       0.01487286, 0.03182626, 0.00729518, 0.01764764, 0.01193849,
       0.02405471, 0.01408249, 0.02632335, 0.02027866, 0.01978292,
       0.04879328, 0.00244737, 0.01937539, 0.01388813, 0.02996677,
       0.00756079, 0.01429659, 0.0050572 , 0.00630326, 0.01496956,
       0.04104425, 0.00911942, 0.00259554, 0.00645944, 0.01460694,
       0.00794788, 0.00592598, 0.0090397 , 0.00532289, 0.01445326,
       0.01156657, 0.0098189 , 0.02077998, 0.0116756 , 0.02593775,
       0.01000463, 0.00533785, 0.0026153 , 0.02261775, 0.00680343,
       0.01859473, 0.03802118, 0.02078981, 0.01196228, 0.03744293,
       0.05164375, 0.00760035, 0.02627101, 0.01579335, 0.01852171,
       0.06768183, 0.01619049, 0.03544484, 0.0126264 , 0.01613638,
       0.00662941, 0.01184946, 0.01843151, 0.0012407 , 0.00687414,
       0.00873796, 0.04397665, 0.06798914, 0.00794379, 0.01098165,
       0.01520306, 0.01257289, 0.02087956, 0.01718063, 0.0292332 ,
       0.00489742, 0.03096065, 0.01163736, 0.01382631, 0.01386944,
       0.01888652, 0.02391748, 0.02814364, 0.01467017, 0.00332169,
       0.0023627 , 0.02348599, 0.00762246, 0.00390889, 0.01277579,
       0.00247891, 0.00854051])

求酒店的推荐

python 复制代码
indices=pd.Series(df.index)
indices[:5]
复制代码
0    Hilton Garden Seattle Downtown
1            Sheraton Grand Seattle
2     Crowne Plaza Seattle Downtown
3     Kimpton Hotel Monaco Seattle 
4                The Westin Seattle
Name: name, dtype: object
python 复制代码
def recommendation(name,cosine_similarity):
    recommend_hotels=[]
    idx=indices[indices==name].index[0]
    score_series=pd.Series(cosine_similarity[idx]).sort_values(ascending=False)
    top_10_indexes=list(score_series[1:11].index)
    for i in top_10_indexes:
        recommend_hotels.append(list(df.index)[i])
    return recommend_hotels                                
python 复制代码
recommendation('Hilton Garden Seattle Downtown',cosine_similarity)
复制代码
['Staybridge Suites Seattle Downtown - Lake Union',
 'Silver Cloud Inn - Seattle Lake Union',
 'Residence Inn by Marriott Seattle Downtown/Lake Union',
 'MarQueen Hotel',
 'The Charter Hotel Seattle, Curio Collection by Hilton',
 'Embassy Suites by Hilton Seattle Tacoma International Airport',
 'SpringHill Suites Seattle\xa0Downtown',
 'Courtyard by Marriott Seattle Downtown/Pioneer Square',
 'The Loyal Inn',
 'EVEN Hotel Seattle - South Lake Union']
相关推荐
xchenhao3 小时前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao3 小时前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
☼←安于亥时→❦3 小时前
数据分析之Pandas入门小结
python·pandas
TwoAI3 小时前
Scikit-learn 机器学习:构建、训练与评估预测模型
python·机器学习·scikit-learn
java1234_小锋12 小时前
Scikit-learn Python机器学习 - 分类算法 - 朴素贝叶斯
python·机器学习·scikit-learn
TwoAI15 小时前
Matplotlib:绘制你的第一张折线图与散点图
python·matplotlib
eqwaak016 小时前
Matplotlib 动画显示进阶:交互式控制、3D 动画与未来趋势
python·tcp/ip·3d·语言模型·matplotlib
TwoAI1 天前
Pandas 数据分析:从入门到精通的数据处理核心
数据挖掘·数据分析·pandas
TwoAI1 天前
Scikit-learn:从零开始构建你的第一个机器学习模型
python·机器学习·scikit-learn
xchenhao1 天前
SciKit-Learn 全面分析分类任务 breast_cancer 数据集
python·机器学习·分类·数据集·scikit-learn·svm