基于文本来推荐相似酒店

基于文本来推荐相似酒店

查看数据集基本信息

python 复制代码
import pandas as pd
import numpy as np
from nltk.corpus import stopwords
from sklearn.metrics.pairwise import linear_kernel
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import random
import cufflinks
import cufflinks
from plotly.offline import iplot
python 复制代码
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df.head()

| | name | address | desc |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a...
python 复制代码
df.shape
复制代码
(152, 3)
python 复制代码
df['desc'][0]
复制代码
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."

查看酒店描述中主要介绍信息

python 复制代码
vec=CountVectorizer().fit(df['desc'])
python 复制代码
vec=CountVectorizer().fit(df['desc'])
bag_of_words=vec.transform(df['desc'])
sum_words=bag_of_words.sum(axis=0)
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
sum_words[1:10]
复制代码
[('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280)]
python 复制代码
bag_of_words=vec.transform(df['desc'])
bag_of_words.shape
复制代码
(152, 3200)
python 复制代码
bag_of_words.toarray()
复制代码
array([[0, 1, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 1, 0, 0]], dtype=int64)
python 复制代码
sum_words=bag_of_words.sum(axis=0)
sum_words
复制代码
matrix([[ 1, 11, 11, ...,  2,  6,  2]], dtype=int64)
python 复制代码
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
python 复制代码
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
python 复制代码
sum_words[1:10]
复制代码
[('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280)]

将以上信息整合成函数

python 复制代码
def get_top_n_words(corpus,n=None):
    vec=CountVectorizer().fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]
python 复制代码
common_words=get_top_n_words(df['desc'],20)
common_words
复制代码
[('the', 1258),
 ('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280),
 ('is', 271),
 ('at', 231),
 ('from', 224),
 ('for', 216),
 ('your', 186),
 ('or', 161),
 ('center', 151),
 ('are', 136),
 ('downtown', 133),
 ('on', 129)]
python 复制代码
df1=pd.DataFrame(common_words,columns=['desc','count'])
python 复制代码
common_words=get_top_n_words(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>    
python 复制代码
chart_info1=df1.groupby(['desc']).sum().sort_values('count',ascending=False)
python 复制代码
chart_info1.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>
python 复制代码
def get_any1_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(1,1)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]
python 复制代码
common_words=get_any1_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>
python 复制代码
def get_any2_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(2,2)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]

common_words=get_any2_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>
python 复制代码
def get_any3_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(3,3)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]

common_words=get_any3_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
复制代码
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

描述的一些统计信息

python 复制代码
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df['desc'][0]
复制代码
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."
python 复制代码
df['word_count']=df['desc'].apply(   lambda x:len(str(x).split(' '))    )
df.head()                                    

| | name | address | desc | word_count |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... | 184 |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... | 152 |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... | 147 |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... | 151 |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a... 151
python 复制代码
df['word_count'].plot(kind='hist',bins=50)
复制代码
<AxesSubplot:ylabel='Frequency'>

文本处理

python 复制代码
sub_replace=re.compile('[^0-9a-z#-]')
python 复制代码
from nltk.corpus import stopwords
python 复制代码
stopwords=set(stopwords.words('english'))
python 复制代码
def clean_txt(text):
    text.lower()
    text=sub_replace.sub(' ',text)
    ''.join(    word   for word in text.split(' ')  if word not in stopwords               )
    return  text
python 复制代码
df['desc_clean']=df['desc'].apply(clean_txt)
python 复制代码
df['desc_clean'][0]
复制代码
' ocated on the southern tip of  ake  nion  the  ilton  arden  nn  eattle  owntown hotel is perfectly located for business and leisure    he neighborhood is home to numerous major international companies including  mazon   oogle and the  ill    elinda  ates  oundation    wealth of eclectic restaurants and bars make this area of  eattle one of the most sought out by locals and visitors   ur proximity to  ake  nion allows visitors to take in some of the  acific  orthwest s majestic scenery and enjoy outdoor activities like kayaking and sailing  over 2 000 sq  ft  of versatile space and a complimentary business center   tate-of-the-art     technology and our helpful staff will guarantee your conference  cocktail reception or wedding is a success   efresh in the sparkling saltwater pool  or energize with the latest equipment in the 24-hour fitness center   astefully decorated and flooded with natural light  our guest rooms and suites offer everything you need to relax and stay productive   nwind in the bar  and enjoy  merican cuisine for breakfast  lunch and dinner in our restaurant   he 24-hour  avilion  antry  stocks a variety of snacks  drinks and sundries '

相似度计算

python 复制代码
df.index
复制代码
RangeIndex(start=0, stop=152, step=1)
python 复制代码
df.head()

| | name | address | desc | word_count | desc_clean |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... | 184 | ocated on the southern tip of ake nion the... |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... | 152 | ocated in the city s vibrant core the herat... |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... | 147 | ocated in the heart of downtown eattle the ... |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... | 151 | hat s near our hotel downtown eattle locatio... |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a... 151 ituated amid incredible shopping and iconic a...
python 复制代码
df.set_index('name' ,inplace=True)
python 复制代码
df.index[:5]
复制代码
Index(['Hilton Garden Seattle Downtown', 'Sheraton Grand Seattle',
       'Crowne Plaza Seattle Downtown', 'Kimpton Hotel Monaco Seattle ',
       'The Westin Seattle'],
      dtype='object', name='name')
python 复制代码
tf=TfidfVectorizer(analyzer='word',ngram_range=(1,3),stop_words='english')#将原始文档集合转换为TF-IDF特性的矩阵。
tf
复制代码
TfidfVectorizer(ngram_range=(1, 3), stop_words='english')
python 复制代码
tfidf_martix=tf.fit_transform(df['desc_clean'])
tfidf_martix.shape
复制代码
(152, 27694)
python 复制代码
cosine_similarity=linear_kernel(tfidf_martix,tfidf_martix)
cosine_similarity.shape
复制代码
(152, 152)
python 复制代码
cosine_similarity[0]
复制代码
array([1.        , 0.01354605, 0.02855898, 0.00666729, 0.02915865,
       0.01258837, 0.0190937 , 0.0152567 , 0.00689703, 0.01852763,
       0.01241924, 0.00919602, 0.01189826, 0.01234794, 0.01200711,
       0.01596218, 0.00979221, 0.04374643, 0.01138524, 0.02334485,
       0.02358692, 0.00829121, 0.00620275, 0.01700472, 0.0191396 ,
       0.02340334, 0.03193292, 0.00678849, 0.02272962, 0.0176494 ,
       0.0125159 , 0.03702338, 0.01569165, 0.02001584, 0.03656467,
       0.03189017, 0.00644231, 0.01008181, 0.02428547, 0.03327365,
       0.01367507, 0.00827835, 0.01722986, 0.04135263, 0.03315194,
       0.01529834, 0.03568623, 0.01294482, 0.03480617, 0.01447235,
       0.02563783, 0.01650068, 0.03328324, 0.01562323, 0.02703264,
       0.01315504, 0.02248426, 0.02690816, 0.00565479, 0.02899467,
       0.02900863, 0.00971019, 0.0439659 , 0.03020971, 0.02166199,
       0.01487286, 0.03182626, 0.00729518, 0.01764764, 0.01193849,
       0.02405471, 0.01408249, 0.02632335, 0.02027866, 0.01978292,
       0.04879328, 0.00244737, 0.01937539, 0.01388813, 0.02996677,
       0.00756079, 0.01429659, 0.0050572 , 0.00630326, 0.01496956,
       0.04104425, 0.00911942, 0.00259554, 0.00645944, 0.01460694,
       0.00794788, 0.00592598, 0.0090397 , 0.00532289, 0.01445326,
       0.01156657, 0.0098189 , 0.02077998, 0.0116756 , 0.02593775,
       0.01000463, 0.00533785, 0.0026153 , 0.02261775, 0.00680343,
       0.01859473, 0.03802118, 0.02078981, 0.01196228, 0.03744293,
       0.05164375, 0.00760035, 0.02627101, 0.01579335, 0.01852171,
       0.06768183, 0.01619049, 0.03544484, 0.0126264 , 0.01613638,
       0.00662941, 0.01184946, 0.01843151, 0.0012407 , 0.00687414,
       0.00873796, 0.04397665, 0.06798914, 0.00794379, 0.01098165,
       0.01520306, 0.01257289, 0.02087956, 0.01718063, 0.0292332 ,
       0.00489742, 0.03096065, 0.01163736, 0.01382631, 0.01386944,
       0.01888652, 0.02391748, 0.02814364, 0.01467017, 0.00332169,
       0.0023627 , 0.02348599, 0.00762246, 0.00390889, 0.01277579,
       0.00247891, 0.00854051])

求酒店的推荐

python 复制代码
indices=pd.Series(df.index)
indices[:5]
复制代码
0    Hilton Garden Seattle Downtown
1            Sheraton Grand Seattle
2     Crowne Plaza Seattle Downtown
3     Kimpton Hotel Monaco Seattle 
4                The Westin Seattle
Name: name, dtype: object
python 复制代码
def recommendation(name,cosine_similarity):
    recommend_hotels=[]
    idx=indices[indices==name].index[0]
    score_series=pd.Series(cosine_similarity[idx]).sort_values(ascending=False)
    top_10_indexes=list(score_series[1:11].index)
    for i in top_10_indexes:
        recommend_hotels.append(list(df.index)[i])
    return recommend_hotels                                
python 复制代码
recommendation('Hilton Garden Seattle Downtown',cosine_similarity)
复制代码
['Staybridge Suites Seattle Downtown - Lake Union',
 'Silver Cloud Inn - Seattle Lake Union',
 'Residence Inn by Marriott Seattle Downtown/Lake Union',
 'MarQueen Hotel',
 'The Charter Hotel Seattle, Curio Collection by Hilton',
 'Embassy Suites by Hilton Seattle Tacoma International Airport',
 'SpringHill Suites Seattle\xa0Downtown',
 'Courtyard by Marriott Seattle Downtown/Pioneer Square',
 'The Loyal Inn',
 'EVEN Hotel Seattle - South Lake Union']
相关推荐
背心2块钱包邮1 小时前
第9节——部分分式积分(Partial Fraction Decomposition)
人工智能·python·算法·机器学习·matplotlib
数据科学项目实践7 小时前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:自定义函数
大数据·人工智能·python·机器学习·matplotlib·数据可视化
Pyeako1 天前
python中pandas库的使用(超详细)
开发语言·python·pandas
工具人55552 天前
numpy如何学
numpy
与代码不die不休2 天前
Numpy学习——创建ndarray的方法
学习·numpy
ranchor6662 天前
excel+pandas使用str.contains() 的典型例子
excel·pandas
python机器学习ML2 天前
机器学习——因果推断方法的DeepIV和因果森林双重机器学习(CausalForestDML)示例
人工智能·机器学习·数据挖掘·数据分析·回归·scikit-learn·sklearn
聊询QQ:688238862 天前
探索ICEEMDAN算法:信号处理的利器
numpy
啊巴矲2 天前
小白从零开始勇闯人工智能:机器学习初级篇(pandas库)
人工智能·机器学习·pandas
python机器学习ML2 天前
EconML实战:使用DeepIV、DROrthoForest与CausalForestDML进行因果推断详解
人工智能·python·机器学习·数据挖掘·数据分析·scikit-learn·sklearn