基于文本来推荐相似酒店

基于文本来推荐相似酒店

查看数据集基本信息

python 复制代码
import pandas as pd
import numpy as np
from nltk.corpus import stopwords
from sklearn.metrics.pairwise import linear_kernel
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import random
import cufflinks
import cufflinks
from plotly.offline import iplot
python 复制代码
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df.head()

| | name | address | desc |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a...
python 复制代码
df.shape
(152, 3)
python 复制代码
df['desc'][0]
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."

查看酒店描述中主要介绍信息

python 复制代码
vec=CountVectorizer().fit(df['desc'])
python 复制代码
vec=CountVectorizer().fit(df['desc'])
bag_of_words=vec.transform(df['desc'])
sum_words=bag_of_words.sum(axis=0)
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
sum_words[1:10]
[('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280)]
python 复制代码
bag_of_words=vec.transform(df['desc'])
bag_of_words.shape
(152, 3200)
python 复制代码
bag_of_words.toarray()
array([[0, 1, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 1, 0, 0]], dtype=int64)
python 复制代码
sum_words=bag_of_words.sum(axis=0)
sum_words
matrix([[ 1, 11, 11, ...,  2,  6,  2]], dtype=int64)
python 复制代码
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
python 复制代码
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
python 复制代码
sum_words[1:10]
[('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280)]

将以上信息整合成函数

python 复制代码
def get_top_n_words(corpus,n=None):
    vec=CountVectorizer().fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]
python 复制代码
common_words=get_top_n_words(df['desc'],20)
common_words
[('the', 1258),
 ('and', 1062),
 ('of', 536),
 ('seattle', 533),
 ('to', 471),
 ('in', 449),
 ('our', 359),
 ('you', 304),
 ('hotel', 295),
 ('with', 280),
 ('is', 271),
 ('at', 231),
 ('from', 224),
 ('for', 216),
 ('your', 186),
 ('or', 161),
 ('center', 151),
 ('are', 136),
 ('downtown', 133),
 ('on', 129)]
python 复制代码
df1=pd.DataFrame(common_words,columns=['desc','count'])
python 复制代码
common_words=get_top_n_words(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>    
python 复制代码
chart_info1=df1.groupby(['desc']).sum().sort_values('count',ascending=False)
python 复制代码
chart_info1.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>
python 复制代码
def get_any1_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(1,1)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]
python 复制代码
common_words=get_any1_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>
python 复制代码
def get_any2_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(2,2)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]

common_words=get_any2_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>
python 复制代码
def get_any3_top_n_words_after_stopwords(corpus,n=None):
    vec=CountVectorizer(stop_words='english',ngram_range=(3,3)).fit(df['desc'])
    bag_of_words=vec.transform(df['desc'])
    sum_words=bag_of_words.sum(axis=0)
    words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
    sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
    return sum_words[:n]

common_words=get_any3_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

描述的一些统计信息

python 复制代码
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df['desc'][0]
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."
python 复制代码
df['word_count']=df['desc'].apply(   lambda x:len(str(x).split(' '))    )
df.head()                                    

| | name | address | desc | word_count |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... | 184 |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... | 152 |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... | 147 |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... | 151 |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a... 151
python 复制代码
df['word_count'].plot(kind='hist',bins=50)
<AxesSubplot:ylabel='Frequency'>

文本处理

python 复制代码
sub_replace=re.compile('[^0-9a-z#-]')
python 复制代码
from nltk.corpus import stopwords
python 复制代码
stopwords=set(stopwords.words('english'))
python 复制代码
def clean_txt(text):
    text.lower()
    text=sub_replace.sub(' ',text)
    ''.join(    word   for word in text.split(' ')  if word not in stopwords               )
    return  text
python 复制代码
df['desc_clean']=df['desc'].apply(clean_txt)
python 复制代码
df['desc_clean'][0]
' ocated on the southern tip of  ake  nion  the  ilton  arden  nn  eattle  owntown hotel is perfectly located for business and leisure    he neighborhood is home to numerous major international companies including  mazon   oogle and the  ill    elinda  ates  oundation    wealth of eclectic restaurants and bars make this area of  eattle one of the most sought out by locals and visitors   ur proximity to  ake  nion allows visitors to take in some of the  acific  orthwest s majestic scenery and enjoy outdoor activities like kayaking and sailing  over 2 000 sq  ft  of versatile space and a complimentary business center   tate-of-the-art     technology and our helpful staff will guarantee your conference  cocktail reception or wedding is a success   efresh in the sparkling saltwater pool  or energize with the latest equipment in the 24-hour fitness center   astefully decorated and flooded with natural light  our guest rooms and suites offer everything you need to relax and stay productive   nwind in the bar  and enjoy  merican cuisine for breakfast  lunch and dinner in our restaurant   he 24-hour  avilion  antry  stocks a variety of snacks  drinks and sundries '

相似度计算

python 复制代码
df.index
RangeIndex(start=0, stop=152, step=1)
python 复制代码
df.head()

| | name | address | desc | word_count | desc_clean |
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... | 184 | ocated on the southern tip of ake nion the... |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... | 152 | ocated in the city s vibrant core the herat... |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... | 147 | ocated in the heart of downtown eattle the ... |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... | 151 | hat s near our hotel downtown eattle locatio... |

4 The Westin Seattle 1900 5th Avenue, Seattle, Washington 98101 USA Situated amid incredible shopping and iconic a... 151 ituated amid incredible shopping and iconic a...
python 复制代码
df.set_index('name' ,inplace=True)
python 复制代码
df.index[:5]
Index(['Hilton Garden Seattle Downtown', 'Sheraton Grand Seattle',
       'Crowne Plaza Seattle Downtown', 'Kimpton Hotel Monaco Seattle ',
       'The Westin Seattle'],
      dtype='object', name='name')
python 复制代码
tf=TfidfVectorizer(analyzer='word',ngram_range=(1,3),stop_words='english')#将原始文档集合转换为TF-IDF特性的矩阵。
tf
TfidfVectorizer(ngram_range=(1, 3), stop_words='english')
python 复制代码
tfidf_martix=tf.fit_transform(df['desc_clean'])
tfidf_martix.shape
(152, 27694)
python 复制代码
cosine_similarity=linear_kernel(tfidf_martix,tfidf_martix)
cosine_similarity.shape
(152, 152)
python 复制代码
cosine_similarity[0]
array([1.        , 0.01354605, 0.02855898, 0.00666729, 0.02915865,
       0.01258837, 0.0190937 , 0.0152567 , 0.00689703, 0.01852763,
       0.01241924, 0.00919602, 0.01189826, 0.01234794, 0.01200711,
       0.01596218, 0.00979221, 0.04374643, 0.01138524, 0.02334485,
       0.02358692, 0.00829121, 0.00620275, 0.01700472, 0.0191396 ,
       0.02340334, 0.03193292, 0.00678849, 0.02272962, 0.0176494 ,
       0.0125159 , 0.03702338, 0.01569165, 0.02001584, 0.03656467,
       0.03189017, 0.00644231, 0.01008181, 0.02428547, 0.03327365,
       0.01367507, 0.00827835, 0.01722986, 0.04135263, 0.03315194,
       0.01529834, 0.03568623, 0.01294482, 0.03480617, 0.01447235,
       0.02563783, 0.01650068, 0.03328324, 0.01562323, 0.02703264,
       0.01315504, 0.02248426, 0.02690816, 0.00565479, 0.02899467,
       0.02900863, 0.00971019, 0.0439659 , 0.03020971, 0.02166199,
       0.01487286, 0.03182626, 0.00729518, 0.01764764, 0.01193849,
       0.02405471, 0.01408249, 0.02632335, 0.02027866, 0.01978292,
       0.04879328, 0.00244737, 0.01937539, 0.01388813, 0.02996677,
       0.00756079, 0.01429659, 0.0050572 , 0.00630326, 0.01496956,
       0.04104425, 0.00911942, 0.00259554, 0.00645944, 0.01460694,
       0.00794788, 0.00592598, 0.0090397 , 0.00532289, 0.01445326,
       0.01156657, 0.0098189 , 0.02077998, 0.0116756 , 0.02593775,
       0.01000463, 0.00533785, 0.0026153 , 0.02261775, 0.00680343,
       0.01859473, 0.03802118, 0.02078981, 0.01196228, 0.03744293,
       0.05164375, 0.00760035, 0.02627101, 0.01579335, 0.01852171,
       0.06768183, 0.01619049, 0.03544484, 0.0126264 , 0.01613638,
       0.00662941, 0.01184946, 0.01843151, 0.0012407 , 0.00687414,
       0.00873796, 0.04397665, 0.06798914, 0.00794379, 0.01098165,
       0.01520306, 0.01257289, 0.02087956, 0.01718063, 0.0292332 ,
       0.00489742, 0.03096065, 0.01163736, 0.01382631, 0.01386944,
       0.01888652, 0.02391748, 0.02814364, 0.01467017, 0.00332169,
       0.0023627 , 0.02348599, 0.00762246, 0.00390889, 0.01277579,
       0.00247891, 0.00854051])

求酒店的推荐

python 复制代码
indices=pd.Series(df.index)
indices[:5]
0    Hilton Garden Seattle Downtown
1            Sheraton Grand Seattle
2     Crowne Plaza Seattle Downtown
3     Kimpton Hotel Monaco Seattle 
4                The Westin Seattle
Name: name, dtype: object
python 复制代码
def recommendation(name,cosine_similarity):
    recommend_hotels=[]
    idx=indices[indices==name].index[0]
    score_series=pd.Series(cosine_similarity[idx]).sort_values(ascending=False)
    top_10_indexes=list(score_series[1:11].index)
    for i in top_10_indexes:
        recommend_hotels.append(list(df.index)[i])
    return recommend_hotels                                
python 复制代码
recommendation('Hilton Garden Seattle Downtown',cosine_similarity)
['Staybridge Suites Seattle Downtown - Lake Union',
 'Silver Cloud Inn - Seattle Lake Union',
 'Residence Inn by Marriott Seattle Downtown/Lake Union',
 'MarQueen Hotel',
 'The Charter Hotel Seattle, Curio Collection by Hilton',
 'Embassy Suites by Hilton Seattle Tacoma International Airport',
 'SpringHill Suites Seattle\xa0Downtown',
 'Courtyard by Marriott Seattle Downtown/Pioneer Square',
 'The Loyal Inn',
 'EVEN Hotel Seattle - South Lake Union']
相关推荐
william_liu119 小时前
6-pandas数据读取
pandas
白雪公主的后妈19 小时前
数据的简单处理——pandas模块——读取数据(Excel和csv格式)
开发语言·python·学习·excel·pandas
白雪公主的后妈21 小时前
数据的存储和处理——创建数组
开发语言·python·学习·numpy
白雪公主的后妈2 天前
数据的简单处理——pandas模块——数据结构(Series和DataFrame对象)
开发语言·数据结构·python·学习·pandas
白雪公主的后妈2 天前
数据的简单处理——pandas模块——选择数据
开发语言·python·学习·pandas
书剑风雪2 天前
Chapter 03 复合数据类型-1
windows·python·conda·numpy·pandas·pip·dash
Lx3523 天前
Pandas数据应用:股票数据分析
后端·python·pandas
知识在于积累3 天前
Matplotlib中隐藏坐标轴但保留坐标轴标签的3D图
3d·matplotlib·隐藏坐标轴·显式坐标标签
冰蓝蓝3 天前
np.triu:NumPy中提取上三角矩阵的利器
线性代数·矩阵·numpy
KevinRay_4 天前
Numpy指南:解锁Python多维数组与矩阵运算(下)
python·矩阵·numpy·排序·文件读写