目标检测指标AP50/准确率/召回率说明

本文参考:【计算机视觉 | 目标检测】常见的两种评价指标:AP50和APr的理解和对比-CSDN博客

一、概念

AP(Average Precision)平均准确率,它是目标检测中广泛使用的一种评价指标,用于衡量模型的预测准确率。

AP50指平均准确率在IOU阈值为0.5时的值,也就是True Positive的条件是IOU为0.5以上 并且 类别预测正确。它是目标检测中最常用的评估指标之一。

mAP为平均均值准确率。

召回率:在所有测试集的真实框中,被正确预测到的比例。

准确率:在所有预测到的框中,被正确识别的比例。

准确率-召回率曲线:算法推理时每个预测框都有目标识别的置信度,通过在不同的置信度阈值下,以不同的召回率计算出的对应的准确率的点组成的曲线。

二、AP计算方式

AP的计算方式是在准确率-召回率曲线上,计算曲线下的面积,然后求平均值。因为对于每个类别,准确率-召回率曲线是不同的,所以会分别计算每个类别的AP值。

优点:考虑了不同置信度阈值下的准确率和召回率之间的平衡,并且可以用来比较不同模型的性能。

缺点:需要预先设定一些阈值来确定真实框和预测框之间的匹配,同时也容易受到类别不平衡和不同大小目标的影响。

三、AP50计算方式

在计算AP50时,首先需要对预测框和真实框进行匹配,然后按照置信度从高到低排序,计算每个置信度下的准确率和召回率,最后对这些准确率-召回率进行插值,得到一个平滑的曲线,计算该曲线下的面积作为AP50的值。AP50越高,说明模型在IOU阈值为0.5时的性能越好。

四、mAP的计算方式

它是计算多组值的平均值。

比如有这么一种计算方式,取AP50到AP60,以0.5为间隔进行取值,分别得到不同的APX的值,然后求平均值及可得到mAP的值。

相关推荐
老吴学AI3 分钟前
系列报告十二:(HAI) What workers really want from AI?
人工智能
喜欢吃豆4 分钟前
LangChain 架构深度解析:从中间件机制到人机协同 SQL 智能体实战报告
人工智能·中间件·架构·langchain·大模型
Mintopia5 分钟前
如何结合 AI,为未来社交群体构建「信任桥梁」
人工智能·react native·架构
电商API_1800790524710 分钟前
大麦网API实战指南:关键字搜索与详情数据获取全解析
java·大数据·前端·人工智能·spring·网络爬虫
蚍蜉撼树谈何易10 分钟前
一、语音识别基础(1.1 语音特征的提取)
人工智能·语音识别
线束线缆组件品替网10 分钟前
Conxall 防水线缆在户外工控中的布线实践
运维·人工智能·汽车·电脑·材料工程·智能电视
皇族崛起17 分钟前
【视觉多模态】基于视觉AI的人物轨迹生成方案
人工智能·python·计算机视觉·图文多模态·视觉多模态
dundunmm20 分钟前
【每天一个知识点】本体论
人工智能·rag·本体论
nimadan1221 分钟前
**免费有声书配音软件2025推荐,高拟真度AI配音与多场景
人工智能·python
jkyy201427 分钟前
汽车×大健康融合:智慧健康监测座舱成车企新赛道核心布局
大数据·人工智能·物联网·汽车·健康医疗