目标检测指标AP50/准确率/召回率说明

本文参考:【计算机视觉 | 目标检测】常见的两种评价指标:AP50和APr的理解和对比-CSDN博客

一、概念

AP(Average Precision)平均准确率,它是目标检测中广泛使用的一种评价指标,用于衡量模型的预测准确率。

AP50指平均准确率在IOU阈值为0.5时的值,也就是True Positive的条件是IOU为0.5以上 并且 类别预测正确。它是目标检测中最常用的评估指标之一。

mAP为平均均值准确率。

召回率:在所有测试集的真实框中,被正确预测到的比例。

准确率:在所有预测到的框中,被正确识别的比例。

准确率-召回率曲线:算法推理时每个预测框都有目标识别的置信度,通过在不同的置信度阈值下,以不同的召回率计算出的对应的准确率的点组成的曲线。

二、AP计算方式

AP的计算方式是在准确率-召回率曲线上,计算曲线下的面积,然后求平均值。因为对于每个类别,准确率-召回率曲线是不同的,所以会分别计算每个类别的AP值。

优点:考虑了不同置信度阈值下的准确率和召回率之间的平衡,并且可以用来比较不同模型的性能。

缺点:需要预先设定一些阈值来确定真实框和预测框之间的匹配,同时也容易受到类别不平衡和不同大小目标的影响。

三、AP50计算方式

在计算AP50时,首先需要对预测框和真实框进行匹配,然后按照置信度从高到低排序,计算每个置信度下的准确率和召回率,最后对这些准确率-召回率进行插值,得到一个平滑的曲线,计算该曲线下的面积作为AP50的值。AP50越高,说明模型在IOU阈值为0.5时的性能越好。

四、mAP的计算方式

它是计算多组值的平均值。

比如有这么一种计算方式,取AP50到AP60,以0.5为间隔进行取值,分别得到不同的APX的值,然后求平均值及可得到mAP的值。

相关推荐
生成论实验室17 小时前
生成论之基:“阴阳”作为元规则的重构与证成——基于《易经》与《道德经》的古典重诠与现代显象
人工智能·科技·神经网络·算法·架构
数据分享者17 小时前
对话对齐反馈数据集:12000+高质量人类-助手多轮对话用于RLHF模型训练与评估-人工智能-大语言模型对齐-人类反馈强化学习-训练符合人类期望的对话模型
人工智能·语言模型·自然语言处理
Java后端的Ai之路17 小时前
【人工智能领域】- 卷积神经网络(CNN)深度解析
人工智能·神经网络·cnn
_清欢l17 小时前
Dify+test2data实现自然语言查询数据库
数据库·人工智能·openai
咕噜签名-铁蛋17 小时前
云服务器GPU:释放AI时代的算力引擎
运维·服务器·人工智能
Niuguangshuo17 小时前
变分推断:用简单分布逼近复杂世界的艺术
人工智能·机器学习
enjoy编程17 小时前
Spring-AI 大模型未来:从“学会世界”到“进入世界”的范式跃迁
人工智能·领域大模型·替换工种·中后训练·长尾场景
沛沛老爹17 小时前
深入理解Agent Skills——AI助手的“专业工具箱“实战入门
java·人工智能·交互·rag·企业开发·web转型ai
俊哥V18 小时前
AI一周事件(2026年01月01日-01月06日)
人工智能·ai
向量引擎18 小时前
【万字硬核】解密GPT-5.2-Pro与Sora2底层架构:从Transformer到世界模型,手撸一个高并发AI中台(附Python源码+压测报告)
人工智能·gpt·ai·aigc·ai编程·ai写作·api调用