目标检测指标AP50/准确率/召回率说明

本文参考:【计算机视觉 | 目标检测】常见的两种评价指标:AP50和APr的理解和对比-CSDN博客

一、概念

AP(Average Precision)平均准确率,它是目标检测中广泛使用的一种评价指标,用于衡量模型的预测准确率。

AP50指平均准确率在IOU阈值为0.5时的值,也就是True Positive的条件是IOU为0.5以上 并且 类别预测正确。它是目标检测中最常用的评估指标之一。

mAP为平均均值准确率。

召回率:在所有测试集的真实框中,被正确预测到的比例。

准确率:在所有预测到的框中,被正确识别的比例。

准确率-召回率曲线:算法推理时每个预测框都有目标识别的置信度,通过在不同的置信度阈值下,以不同的召回率计算出的对应的准确率的点组成的曲线。

二、AP计算方式

AP的计算方式是在准确率-召回率曲线上,计算曲线下的面积,然后求平均值。因为对于每个类别,准确率-召回率曲线是不同的,所以会分别计算每个类别的AP值。

优点:考虑了不同置信度阈值下的准确率和召回率之间的平衡,并且可以用来比较不同模型的性能。

缺点:需要预先设定一些阈值来确定真实框和预测框之间的匹配,同时也容易受到类别不平衡和不同大小目标的影响。

三、AP50计算方式

在计算AP50时,首先需要对预测框和真实框进行匹配,然后按照置信度从高到低排序,计算每个置信度下的准确率和召回率,最后对这些准确率-召回率进行插值,得到一个平滑的曲线,计算该曲线下的面积作为AP50的值。AP50越高,说明模型在IOU阈值为0.5时的性能越好。

四、mAP的计算方式

它是计算多组值的平均值。

比如有这么一种计算方式,取AP50到AP60,以0.5为间隔进行取值,分别得到不同的APX的值,然后求平均值及可得到mAP的值。

相关推荐
m0_571186606 分钟前
第二十七周周报
人工智能
cyyt9 分钟前
深度学习周报(12.8~12.14)
人工智能·深度学习
【建模先锋】10 分钟前
多源信息融合!基于特征信号VMD分解+CNN-Transformer的故障诊断模型!
人工智能·深度学习·cnn·transformer·故障诊断·多源信息融合
中國龍在廣州10 分钟前
AI顶会ICML允许AI参与审稿
人工智能·深度学习·算法·机器学习·chatgpt
koo36414 分钟前
12.14周报
人工智能·算法
数据的世界0125 分钟前
重构智慧书-第13条:先知他人别有所图的心思,再伺机行事
人工智能
数据的世界0127 分钟前
重构智慧书-第10条:名声与好运
人工智能
岁月宁静32 分钟前
FastAPI 入门指南
人工智能·后端·python
乾元32 分钟前
AI 如何从配置历史与变更日志中推理出“变更引发的故障”——自动化根因分析的因果推理引擎
网络·人工智能·运维开发
明明如月学长33 分钟前
Token到底是个啥?看完这篇终于懂了(附计算工具)
人工智能