目标检测指标AP50/准确率/召回率说明

本文参考:【计算机视觉 | 目标检测】常见的两种评价指标:AP50和APr的理解和对比-CSDN博客

一、概念

AP(Average Precision)平均准确率,它是目标检测中广泛使用的一种评价指标,用于衡量模型的预测准确率。

AP50指平均准确率在IOU阈值为0.5时的值,也就是True Positive的条件是IOU为0.5以上 并且 类别预测正确。它是目标检测中最常用的评估指标之一。

mAP为平均均值准确率。

召回率:在所有测试集的真实框中,被正确预测到的比例。

准确率:在所有预测到的框中,被正确识别的比例。

准确率-召回率曲线:算法推理时每个预测框都有目标识别的置信度,通过在不同的置信度阈值下,以不同的召回率计算出的对应的准确率的点组成的曲线。

二、AP计算方式

AP的计算方式是在准确率-召回率曲线上,计算曲线下的面积,然后求平均值。因为对于每个类别,准确率-召回率曲线是不同的,所以会分别计算每个类别的AP值。

优点:考虑了不同置信度阈值下的准确率和召回率之间的平衡,并且可以用来比较不同模型的性能。

缺点:需要预先设定一些阈值来确定真实框和预测框之间的匹配,同时也容易受到类别不平衡和不同大小目标的影响。

三、AP50计算方式

在计算AP50时,首先需要对预测框和真实框进行匹配,然后按照置信度从高到低排序,计算每个置信度下的准确率和召回率,最后对这些准确率-召回率进行插值,得到一个平滑的曲线,计算该曲线下的面积作为AP50的值。AP50越高,说明模型在IOU阈值为0.5时的性能越好。

四、mAP的计算方式

它是计算多组值的平均值。

比如有这么一种计算方式,取AP50到AP60,以0.5为间隔进行取值,分别得到不同的APX的值,然后求平均值及可得到mAP的值。

相关推荐
DeepVis Research1 分钟前
【BCI/Consensus】2026年度脑机接口协同与分布式共识机制基准索引 (Benchmark Index)
人工智能·网络安全·数据集·脑机接口·分布式系统
cyyt1 分钟前
深度学习周报(25.12.29~26.1.4)
人工智能·深度学习
自不量力的A同学3 分钟前
Resemble AI 发布开源语音合成模型 Chatterbox Turbo
人工智能
Master_oid4 分钟前
机器学习28:增强式学习(Deep Reinforcement Learn)③
人工智能·学习·机器学习
PS1232326 分钟前
港口机械安全运行 风速监测技术守护物流畅通
人工智能
万俟淋曦6 分钟前
【论文速递】2025年第51周(Dec-14-20)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器人·大模型·论文·robotics·具身智能
汗流浃背了吧,老弟!8 分钟前
基于 BERT 的指令微调
人工智能·深度学习·bert
Jerryhut11 分钟前
Opencv总结8——停车场项目实战
人工智能·opencv·计算机视觉
WWZZ202511 分钟前
SLAM进阶——数据集
人工智能·计算机视觉·机器人·大模型·slam·具身智能
、BeYourself12 分钟前
PGvector :在 Spring AI 中实现向量数据库存储与相似性搜索
数据库·人工智能·spring·springai