目标检测指标AP50/准确率/召回率说明

本文参考:【计算机视觉 | 目标检测】常见的两种评价指标:AP50和APr的理解和对比-CSDN博客

一、概念

AP(Average Precision)平均准确率,它是目标检测中广泛使用的一种评价指标,用于衡量模型的预测准确率。

AP50指平均准确率在IOU阈值为0.5时的值,也就是True Positive的条件是IOU为0.5以上 并且 类别预测正确。它是目标检测中最常用的评估指标之一。

mAP为平均均值准确率。

召回率:在所有测试集的真实框中,被正确预测到的比例。

准确率:在所有预测到的框中,被正确识别的比例。

准确率-召回率曲线:算法推理时每个预测框都有目标识别的置信度,通过在不同的置信度阈值下,以不同的召回率计算出的对应的准确率的点组成的曲线。

二、AP计算方式

AP的计算方式是在准确率-召回率曲线上,计算曲线下的面积,然后求平均值。因为对于每个类别,准确率-召回率曲线是不同的,所以会分别计算每个类别的AP值。

优点:考虑了不同置信度阈值下的准确率和召回率之间的平衡,并且可以用来比较不同模型的性能。

缺点:需要预先设定一些阈值来确定真实框和预测框之间的匹配,同时也容易受到类别不平衡和不同大小目标的影响。

三、AP50计算方式

在计算AP50时,首先需要对预测框和真实框进行匹配,然后按照置信度从高到低排序,计算每个置信度下的准确率和召回率,最后对这些准确率-召回率进行插值,得到一个平滑的曲线,计算该曲线下的面积作为AP50的值。AP50越高,说明模型在IOU阈值为0.5时的性能越好。

四、mAP的计算方式

它是计算多组值的平均值。

比如有这么一种计算方式,取AP50到AP60,以0.5为间隔进行取值,分别得到不同的APX的值,然后求平均值及可得到mAP的值。

相关推荐
m0_650108245 小时前
Vision-Language-Action 模型在自动驾驶中的应用(VLA4AD)
论文阅读·人工智能·自动驾驶·端到端自动驾驶·vla4ad·自动驾驶与多模态大模型交叉
爱笑的眼睛115 小时前
文本分类的范式演进:从统计概率到语言模型提示工程
java·人工智能·python·ai
星川皆无恙5 小时前
基于知识图谱+深度学习的大数据NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
大数据·人工智能·python·深度学习·自然语言处理·知识图谱
美狐美颜SDK开放平台5 小时前
自研还是接入第三方?直播美颜sdk与滤镜功能的技术选型分析
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
weixin_416660075 小时前
插件分享:将AI生成的数学公式无损导出为Word文档
人工智能·ai·word·论文·数学公式·deepseek
PM老周5 小时前
DORA2025:如何用AI提升研发效能(以 ONES MCP Server 为例)
大数据·人工智能
皇族崛起5 小时前
【众包 + AI智能体】AI境生态巡查平台边防借鉴价值专项调研——以广西边境线治理为例
大数据·人工智能
zhaodiandiandian5 小时前
AI大模型:重构产业生态的核心引擎
人工智能·重构
Together_CZ6 小时前
AI助力构建生态环境治理,基于最新超图增强型自适应视觉感知YOLOv13全系列【n/s/l/x】参数模型开发构建无人机巡检场景下随意堆放建筑垃圾检测预警系统
目标检测·无人机·yolov13·生态环境治理·超图增强型自适应视觉感知·无人机巡检场景·随意堆放建筑垃圾检测预警