目标检测-AnyLabeling标注格式转换成YOLO格式

Anylabel可以极大的增加数据的标注效率,但是其标注格式如何能转换成YOLO标注格式,具体内容如下所示。


关于AnyLabeling的其它详细介绍如下链接所示

https://blog.csdn.net/u011775793/article/details/134918861

Github链接

https://github.com/vietanhdev/anylabeling

python代码

python 复制代码
import json
import os


def labelme_to_yolo(label_me_json_file, cls2id_dict):
    label_me_json = json.load(open(label_me_json_file, mode='r', encoding='UTF-8'))
    shapes = label_me_json['shapes']
    img_width, img_height = label_me_json['imageWidth'], label_me_json['imageHeight']
    img_path = label_me_json['imagePath']
    img_data = label_me_json['imageData'] if 'imageData' in label_me_json else ''

    labels = []
    for s in shapes:
        s_type = s['shape_type']
        s_type = s_type.lower()
        if s_type == 'rectangle':
            pts = s['points']
            x1, y1 = pts[0]  # left corner
            x2, y2 = pts[1]  # right corner
            x = (x1 + x2) / 2 / img_width
            y = (y1 + y2) / 2 / img_height
            w = abs(x2 - x1) / img_width
            h = abs(y2 - y1) / img_height
            cid = cls2id_dict[s['label']]
            labels.append(f'{cid} {x} {y} {w} {h}')

    return labels

def write_label2txt(save_txt_path,label_list):
    f=open(save_txt_path,"w",encoding="UTF-8")

    for label in label_list:
        temp_list=label.split(" ")
        f.write(temp_list[0])
        f.write(" ")
        f.write(temp_list[1])
        f.write(" ")
        f.write(temp_list[2])
        f.write(" ")
        f.write(temp_list[3])
        f.write(" ")
        f.write(temp_list[4])
        f.write("\n")

if __name__ == '__main__':
    # 原始图片文件夹路径
    img_dir=r"D:\desk\Work\Dataset\Test\Test_Anylabeling\imgs"
    # 原始JSON标签文件夹路径
    json_dir=r"D:\desk\Work\Dataset\Test\Test_Anylabeling\labels"
    # 生成保存TXT文件夹路径
    save_dir=r"D:\desk\Work\Dataset\Test\Test_Anylabeling\txt"
    # 类别和序号的映射字典
    cls2id_dict={"building1":"0"}

    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    for json_name in os.listdir(json_dir):
        json_path=os.path.join(json_dir,json_name)
        txt_name=json_name.split(".")[0]+".txt"
        save_txt_path=os.path.join(save_dir,txt_name)
        labels = labelme_to_yolo(json_path,cls2id_dict)
        write_label2txt(save_txt_path,labels)

具体修改

复制代码
# 原始图片文件夹路径
img_dir=r"D:\desk\Work\Dataset\Test\Test_Anylabeling\imgs"

改为自己的图片路径

复制代码
# 原始JSON标签文件夹路径
json_dir=r"D:\desk\Work\Dataset\Test\Test_Anylabeling\labels"

改为自己的JSON文件夹路径

复制代码
# 生成保存TXT文件夹路径
save_dir=r"D:\desk\Work\Dataset\Test\Test_Anylabeling\txt"

改为自己的保存生成的yolo文件夹路径

复制代码
# 类别和序号的映射字典
cls2id_dict={"building1":"0"}

改为自己的标签映射

开始实验

实验准备

运行代码

实验验证

实验验证可视化代码相关链接

https://blog.csdn.net/weixin_49824703/article/details/134050547

完美!

相关推荐
工程师老罗2 小时前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
逸俊晨晖2 小时前
NVIDIA 4090的8路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·nvidia
工程师老罗4 小时前
YOLOv1数据增强
人工智能·yolo
weixin_468466854 小时前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参
智驱力人工智能13 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
工程师老罗13 小时前
YOLOv1 核心结构解析
yolo
Lun3866buzha14 小时前
YOLOv10-BiFPN融合:危险物体检测与识别的革新方案,从模型架构到实战部署全解析
yolo
Katecat9966314 小时前
YOLOv8-MambaOut在电子元器件缺陷检测中的应用与实践_1
yolo
工程师老罗15 小时前
YOLOv1 核心知识点笔记
笔记·yolo
工程师老罗20 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo