【康耐视国产案例】AI视觉相机创新 加速商超物流数智化转型

连锁商超/零售店正面临着因消费者购物习惯改变等挑战,迎来了以新兴技术崛起而催生的数字化物流体系转型需求。物流行业与AI机器视觉的深度融合,解决了传统机器视觉识别速度慢、环境要求高、定制化部署耗时过多等痛点,大大提高了物流供应链的效率和准确性。

本期将聚焦商超零售供应链内部的物流周转环节优化,为同类场景应用带来更多启发。

康耐视推出的搭载边缘学习技术的机器视觉产品In-Sight 2800 Detector正符合商超零售场景下的物流系统需求,借助简单易用的AI工具,提供包裹检测、物品分拣,流程问题检测等多功能应用,支持客户开箱即用灵活配置,切实帮助传统商超零售企业完成自动化、智能化转型。

客户需求

周转箱是连锁商超/零售店存储、分拣环节中常见的容器形态。在日常循环使用过程中,需要检测其内部是否存在异物垃圾,并能忽略掉快递包裹所残留的包装塑料碎片,以及周转箱体上的磨损划痕,否则工作人员便需要频繁地去清理,从而增加了人员工作量。

3大功能优势解决方案

启发更多物流应用场景

1

包裹有无检测

In-Sight 2800 Detector所嵌入的强大边缘学习技术,能快速准确的处理图像,通过高分辨率彩色摄像头呈现较小部件的特征,支持快速识别明显异物和忽略体积较小的、不造成影响的杂质内容,同时箱体本身的划痕、赃污、磨损等外观环境因素不会对判定结果造成影响。

2

包裹分类并屏蔽背景干扰

In-Sight 2800 Detector配备的机器视觉系统以拍照获取图像的形式,并通过ViDi EL Classify工具分析异物特征,并按特征将图像分为不同的类别,能够快速且精准地区分出:异物、细小包装碎片、箱体内的划痕磨损,并将结果上报以支持分拣出应该被移除的异物,确保清理工作的有效性,减少不必要的人工清洁频次。

3

传送带外观及流程问题检测

在商超零售店的货品分拣流程中,传送带变脏会影响包裹美观,若存在异物还可能影响传送带的正常运行,甚至导致故障停机。客户希望及时探测到情况异常,降低风险带来的损害。In-Sight 2800 Detector机器视觉系统能实时监测传送带运行过程中产生的干扰,及时发现托盘脏污、传送带卡住、标签粘连等问题并进行上报,确保设备机器的稳定运行。

20分钟完成设备配置

2小时实现系统稳定运行

通过边缘学习技术的加持,以及专为物流应用优化的光学配件,In-Sight 2800 Detector不仅比传统视觉系统更易于部署,且无需专业人员干预,任何人都可以在短时间内完成设置,灵活易用。

在本次已落地的客户案例中,In-Sight 2800 Detector整套系统能够在20分钟内完成设备配置,所有测试和调试仅用了2个小时;并且这样的配置过程无需外部硬件,无需高级编程技巧,以轻量级的形态就能完成。

目前,整套系统正稳定可靠地运行,大幅提高了商超零售店运营效率的同时,也显著降低了物流周转环节的人力成本支出。

相关推荐
Mephisto.java1 分钟前
【大数据学习 | Spark-Core】Spark提交及运行流程
大数据·学习·spark
肥猪猪爸16 分钟前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
LZXCyrus1 小时前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。1 小时前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
EasyCVR1 小时前
私有化部署视频平台EasyCVR宇视设备视频平台如何构建视频联网平台及升级视频转码业务?
大数据·网络·音视频·h.265
hummhumm1 小时前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
YRr YRr1 小时前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive1 小时前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦1 小时前
生成式AI对产业的影响与冲击
人工智能·aigc
goomind1 小时前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别