基于Transformer的决策智能 第一篇 Decision Intelligence初探

自从特斯拉证明在自动驾驶场景端到端的深度学习模型能够替代人进行决策,一场巨大的技术变革将要到来。我想通过一些实验来建立自己对决策智能的初步认知。

说一下我对决策智能的理解:

智能体能感知到状态S(包括环境状态和自身状态),为了达到设定的目标,需要作出决策A。智能体在执行决策A后,有可能获得奖励R。其中决策通常又可以称为动作。

奖励R通常由人工设计,用于引导智能体更快地达到目标。奖励可以为负值,表示惩罚。

通常智能体需要经过多步决策A才能达到目标,在t时刻,记状态为 <math xmlns="http://www.w3.org/1998/Math/MathML"> S t S_{t} </math>St,智能体在执行决策 <math xmlns="http://www.w3.org/1998/Math/MathML"> A t A_{t} </math>At后,有可能获得奖励 <math xmlns="http://www.w3.org/1998/Math/MathML"> R t R_{t} </math>Rt。

模型的输入是 <math xmlns="http://www.w3.org/1998/Math/MathML"> S t S_{t} </math>St,以及t时刻前的任意状态S/决策A/奖励R。 由于奖励R的设计比较复杂,在本文中我们先取消奖励R,同时为了降低计算量,我们只需要考虑部分t时刻前的状态S/决策A/奖励R。

仍以《基于Transformer的路径规划》一文中的场景为例,

黑色表示障碍物、红色表示智能体的当前位置、蓝色表示目标点。智能体每次只能执行以下4个动作之一:

  • 向上移动一格
  • 向下移动一格
  • 向左移动一格
  • 向右移动一格

智能体每执行一次动作A后,状态S会发生改变,直到智能体的位置与目标点重合。

这次不用GPT模型,改用BERT模型来预测动作A,其实就是多层Transformer Encoder构成的分类模型。模型的输入是状态 <math xmlns="http://www.w3.org/1998/Math/MathML"> S t S_{t} </math>St以及 <math xmlns="http://www.w3.org/1998/Math/MathML"> A t − 1 A_{t-1} </math>At−1,输出是决策 <math xmlns="http://www.w3.org/1998/Math/MathML"> A t A_{t} </math>At,共4个类别:上、下、左、右。为什么要加入 <math xmlns="http://www.w3.org/1998/Math/MathML"> A t − 1 A_{t-1} </math>At−1呢?因为我希望智能体能够尽量保持先前的运动方向,减少转弯。如果不存在 <math xmlns="http://www.w3.org/1998/Math/MathML"> A t − 1 A_{t-1} </math>At−1,可以用0填充。是否需要输入 <math xmlns="http://www.w3.org/1998/Math/MathML"> A t − 2 A_{t-2} </math>At−2、 <math xmlns="http://www.w3.org/1998/Math/MathML"> A t − 3 A_{t-3} </math>At−3等更早的决策?这个还需要通过实验验证。

先定义词汇表:

sql 复制代码
"-": 用于将输入序列补到固定的长度
"0":FREE SPACE, 无障碍区域       
"1":OBSTACLE, 有障碍区域   
"+":CURRENT POSITION, 当前位置
"x":GOAL POSITION, 目标位置
"U": UP,向上移动一格
"D": DOWN,向下移动一格
"L": LEFT,向左移动一格
"R": RIGHT,向右移动一格

模型的输入可表示为:

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 + 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 x 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
D - - - - - - -

只需对《基于Transformer的路径规划 - 第二篇 合成数据》中的训练样本稍作修改即可用于本实验,原始的一条样本被拆成多条样本。

接下来就是训练模型了。如果有读者做过类似的实验,欢迎在评论区留言。


下一篇:基于Transformer的决策智能 第二篇 BERT IS BETTER?

相关推荐
中关村科金2 小时前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
IT猿手4 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解GLSMOP1-GLSMOP9及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·算法·机器学习·matlab·强化学习
lshzdq21 小时前
【机器人】机械臂轨迹和转矩控制对比
人工智能·算法·机器人
夜幕龙1 天前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
望获linux1 天前
赋能新一代工业机器人-望获实时linux在工业机器人领域应用案例
linux·运维·服务器·机器人·操作系统·嵌入式操作系统·工业控制
ai_lian_shuo1 天前
四、使用langchain搭建RAG:金融问答机器人--构建web应用,问答链,带记忆功能
python·ai·金融·langchain·机器人
凳子花❀2 天前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
我爱C编程2 天前
基于Qlearning强化学习的机器人路线规划matlab仿真
matlab·机器人·强化学习·路线规划·qlearning·机器人路线规划
野蛮的大西瓜2 天前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
向阳逐梦3 天前
基于STM32F4单片机实现ROS机器人主板
stm32·单片机·机器人