基于深度强化学习的智能机器人路径规划技术研究在人工智能与机器人技术飞速发展的今天,智能机器人在工业、服务、物流等领域的应用日益广泛。路径规划作为智能机器人运动的核心技术之一,直接影响机器人的工作效率和安全性。近年来,深度强化学习(Deep Reinforcement Learning, DRL)技术为机器人路径规划带来了新的突破。本文将深入探讨深度强化学习在智能机器人路径规划中的应用,分析其原理、优势以及面临的挑战,并通过实验验证其有效性。 一、引言 路径规划是指在给定的环境中,为机器人找到一条从起点到终点的最优路径,同时避开障碍物。传统的路径规划