利用Python处理DAX多条件替换

小A:白茶,救命啊~~~

白茶:什么情况?

小A:是这样的,最近不是临近项目上线嘛,有一大波度量值需要进行类似的调整,一个两个倒没啥,600多个,兄弟,救命啊~~~

白茶(假装沉思):兄弟,你这个事不好搞啊!

小A(眼神暗示):放心 ,规矩我懂!

白茶:开搞开搞!

在实际业务场景中,上述情况产生的频率是非常高的,究其根本,其实有三种原因:

  • 业务逻辑在频繁的改动,牵一发而动全身

  • 数据来源驳杂而不唯一

  • KPI指标过多,观察口径统一

举个例子

假设现在存在以下度量值:

Amt = 
SUMX ( 'Fact_Sales', 'Fact_Sales'[Quantity] * RELATED ( Dim_Product[Price] ) )

Qty = 
SUM ( 'Fact_Sales'[Quantity] )

AmtUnit = 
SWITCH (
    SELECTEDVALUE ( Config_Unit[UnitOrder] ),
    1, [Amt],
    2, [Amt] / 1000,
    3, [Amt] / 7.2,
    4,
        [Amt] / 7.2 / 1000
)

QtyUnit =
SWITCH (
    SELECTEDVALUE ( Config_Unit[UnitOrder] ),
    1, [Qty],
    2, [Qty] / 1000,
    3, [Qty],
    4, [Qty] / 1000
)

AmtData = 
SWITCH (
    SELECTEDVALUE ( Config_Date[DateOrder] ),
    1, [AmtUnit],
    2, CALCULATE ( [AmtUnit], DATESQTD ( 'Dim_Date'[Date] ) ),
    3, CALCULATE ( [AmtUnit], DATESYTD ( 'Dim_Date'[Date] ) )
)

QtyData = 
SWITCH (
    SELECTEDVALUE ( Config_Date[DateOrder] ),
    1, [QtyUnit],
    2, CALCULATE ( [QtyUnit], DATESQTD ( 'Dim_Date'[Date] ) ),
    3, CALCULATE ( [QtyUnit], DATESYTD ( 'Dim_Date'[Date] ) )
)

其前端页面展示如下:

在上图示例中,我们不难发现,Unit类型的度量值是为了切换单位使用的,而DataType是为了切换观测周期使用的,例如查看当月值、季度累计、年累计。

现在我们需要将上述代码中的数字,切换为文本类型,例如:Unit中的1,切换成RMB,DataType中的1切换成MTH,以此类推。

如果仅是上图这几个度量值,那么修改起来是非常简单的,但是如果"数据量级很大 ",且"度量值很多",这种情况下我们修改起来是很头疼的,有没有一种便捷的方法能解决这个问题呢?

解决方案

看到这里,相信有的小伙伴已经意识到了,这种多条件判断,且多条件替换的场景,可以用正则来解决。

但是还可以深化,如果我不会正则怎么办?

我们可以在Python中使用正则来解决此问题,利用通用的Python代码,后续有复用场景仅需微调即可。

代码如下:

python 复制代码
import re

# 样例数据
text = """
在这里输入需要替换的文本
"""

# 定义替换规则
replacement_dict = {
    '条件1': '替换1',
    '条件2': '替换2',
    '条件3': '替换3'
}

# 定义替换函数
def replace_func(match):
    return f'{replacement_dict[match.group(1)]},'

# 正则替换
pattern = re.compile(r'\b(1|2|3),')
result = pattern.sub(replace_func, text)

print(result)

我们来看一下结果输出:

最近因为工作原因,停更了一段时间,还请小伙伴们见谅哦。

后面如果时间充足,白茶还会继续更新的哦,嘿嘿。


相关推荐
jasmine s2 分钟前
Pandas
开发语言·python
郭wes代码2 分钟前
Cmd命令大全(万字详细版)
python·算法·小程序
leaf_leaves_leaf20 分钟前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零125 分钟前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
lucky_syq27 分钟前
Saprk和Flink的区别
大数据·flink
lucky_syq29 分钟前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈29 分钟前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据
404NooFound32 分钟前
Python轻量级NoSQL数据库TinyDB
开发语言·python·nosql
天天要nx44 分钟前
D102【python 接口自动化学习】- pytest进阶之fixture用法
python·pytest
minstbe44 分钟前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机