基于多尺度距离加权神经网络的骨盆骨折分割

文章目录

  • [Pelvic Fracture Segmentation Using a Multi-scale Distance-Weighted Neural Network](#Pelvic Fracture Segmentation Using a Multi-scale Distance-Weighted Neural Network)

Pelvic Fracture Segmentation Using a Multi-scale Distance-Weighted Neural Network

摘要

骨盆骨折是一种严重的高能损伤。从3D CT图像中分割骨盆骨折对创伤诊断、评估和治疗计划非常重要。手动勾画骨折表面可以逐层进行,但这是一个缓慢且容易出错的过程。自动骨折分割面临着骨盆骨结构复杂以及骨折类型和形状变化大的挑战。

该研究提出了一种基于深度学习的自动骨盆骨折分割方法。该方法包括两个连续的网络:

  1. 解剖分割网络:从CT扫描中提取左右髂骨和骶骨。
  2. 骨折分割网络:进一步从每个掩膜骨区域中分割出骨折。

研究者设计并集成了一种基于距离加权的损失函数到3D U-Net中,以提高对骨折边界区域的分割精度。此外,还使用了多尺度深度监督和平滑过渡策略来促进训练。
代码地址

方法

该方法包括三个步骤:

  1. 解剖分割网络:使用级联的3D nn-UNet架构从CT扫描中提取骨盆骨骼。该网络首先在一组健康骨盆CT图像上进行预训练,然后在研究者的骨折数据集上进一步微调。
  2. 骨折分割网络:用于从第一步提取的每个髂骨和骶骨区域中分离出骨块碎片。为了定义一套适用于所有骨折类型的一致标记规则,研究者为每个骨骼指定了三个标签:背景、主要骨块和其他骨块。主要骨块是位于中心的最大骨块。
  3. 最终输出:进一步分离和标记孤立的骨块组件,并移除小的孤立骨块碎片。

实验结果


相关推荐
fl17683118 小时前
基于yolov8+vue3实现目标检测后台管理系统
人工智能·yolo·目标检测
Juchecar18 小时前
细读一篇文档的提问模版
人工智能
视觉&物联智能18 小时前
【杂谈】-制造业变革:机器人与自动化引领新时代
人工智能·ai·机器人·自动化·aigc·agi·deepseek
七元权18 小时前
论文阅读-EfficientAD
论文阅读·深度学习·实时·异常检测
Matrix_1118 小时前
论文阅读:Multi-Spectral Image Color Reproduction
论文阅读·人工智能·计算摄影
飞哥数智坊18 小时前
内置 Claude 下线,TRAE 用户又得换搭档了
人工智能·claude·trae
CoovallyAIHub19 小时前
告别碎片化!Dinomaly2:一个极简框架统一所有异常检测任务
深度学习·算法·计算机视觉
大任视点19 小时前
可梦AI获首批企业好评,蜜糖网络入驻共启AI短剧工业化
人工智能
CoovallyAIHub19 小时前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
深度学习·计算机视觉·强化学习
高洁0119 小时前
大模型-详解 Vision Transformer (ViT)
人工智能·python·深度学习·算法·transformer