【python深度学习】——pytorch中tensor的view、resize(resize_)与reshape

@TOC

1. view()

view()方法具有以下特性:

  1. 它只能在tensor是连续的时候使用(可以调用is_contiguous()方法查看tensor是否连续), 如果要对不连续的张量使用, 需要先使用.contiguous()使其在内存上连续。
  2. view()方法不改变tensor的storage内容, 只改变其元数据(metadata)。(参见后面的示例代码,通过tensor的storage().data_ptr()查看数据的地址)
  3. 调用view()时,需要确保tensor的元素总数保持不变。例如, [2, 3]的tensor可以view为[3, 2]或[1, 6]。

示例代码

python 复制代码
import torch

# 创建一个2x3的tensor
tensor = torch.rand(2, 3)
print(tensor.shape)  

# 使用view()改变tensor形状
new_tensor = tensor.view(3, 2)
print(new_tensor.shape)  

# 查看tensor和new_tensor的存储地址
print(tensor.storage().data_ptr())  
print(new_tensor.storage().data_ptr())  

# 查看tensor和new_tensor的存储内容
print(tensor.storage())
print(new_tensor.storage())

# 查看tensor和new_tensor的stride
print(tensor.stride())  
print(new_tensor.stride())  

2. resize()/resize_():

  1. resize_()是原地操作版本,会直接修改原tensor,而resize()会返回一个新的tensor。
  2. resize()/resize_()方法可以自动改变tensor的元素总数。如果新形状的元素总数大于原来的,会用0填充新增的元素;如果小于原来的,则会截断多余的元素。在补0的情况下, 会开辟一块新的内存区域来存放新的tensor。

示例代码

python 复制代码
import torch

# 创建一个2x3的tensor
tensor = torch.tensor([1,2,3,4])
print(tensor.shape)
print(tensor.storage().data_ptr())
# 使用resize()改变tensor形状
tensor.resize_(3, 2)
print(tensor.shape) # Output: torch.Size([3, 2])

# 新增的元素会被填充为0
print(tensor)
print(tensor.storage().data_ptr())

3. reshape():

  1. 在数据连续时
    reshape()方法在数据连续时, 作用和view()类似, 都是共享存储区的情况下(不改变tensor的storage)
  2. 不连续 时, reshape类似等同于contiguous()+view()------它会在新的存储区创建一个tensor, 不与原数据共享存储区。

示例代码

python 复制代码
import torch

# 创建一个2x3的tensor
tensor = torch.rand(2, 3)

# reshape()处理非连续的tensor
non_contiguous = tensor.t()
print(non_contiguous.is_contiguous()) # Output: False
reshaped = non_contiguous.reshape(1, 6)
print(reshaped.is_contiguous()) # Output: True

print(reshaped.storage().data_ptr())
print(non_contiguous.storage().data_ptr())
相关推荐
好看资源平台6 分钟前
网络爬虫——综合实战项目:多平台房源信息采集与分析系统
爬虫·python
余生H6 分钟前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
进击的六角龙27 分钟前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂27 分钟前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
罗小罗同学35 分钟前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
湫ccc35 分钟前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤38 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭40 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~41 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
lzhlizihang43 分钟前
python如何使用spark操作hive
hive·python·spark