Transformers集成SwanLab实现AI训练可视化监控

🤗HuggingFace Transformers

Hugging Face 的 Transformers 是一个非常流行的开源库,它提供了大量预训练的模型,主要用于自然语言处理(NLP)任务。这个库的目标是使最新的模型能够易于使用,并支持多种框架,如 TensorFlow 和 PyTorch。

你可以使用Transformers快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

1. 引入SwanLabCallback

python 复制代码
from swanlab.integration.huggingface import SwanLabCallback

SwanLabCallback是适配于Transformers的日志记录类。

SwanLabCallback可以定义的参数有:

  • project、experiment_name、description 等与 swanlab.init 效果一致的参数, 用于SwanLab项目的初始化。
  • 你也可以在外部通过swanlab.init创建项目,集成会将实验记录到你在外部创建的项目中。

2. 传入Trainer

python 复制代码
from swanlab.integration.huggingface import SwanLabCallback
from transformers import Trainer, TrainingArguments

...

# 实例化SwanLabCallback
swanlab_callback = SwanLabCallback(project="hf-visualization")

trainer = Trainer(
    ...
    # 传入callbacks参数
    callbacks=[swanlab_callback],
)

trainer.train()

3. 完整案例代码

python 复制代码
import evaluate
import numpy as np
import swanlab
from swanlab.integration.huggingface import SwanLabCallback
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments


def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)


def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return metric.compute(predictions=predictions, references=labels)


dataset = load_dataset("yelp_review_full")

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

tokenized_datasets = dataset.map(tokenize_function, batched=True)

small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))

metric = evaluate.load("accuracy")

model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

training_args = TrainingArguments(
    output_dir="test_trainer",
    # 如果只需要用SwanLab跟踪实验,则将report_to参数设置为"none"
    report_to="none",
    num_train_epochs=3,
    logging_steps=50,
)

# 实例化SwanLabCallback
swanlab_callback = SwanLabCallback(experiment_name="TransformersTest")

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=small_train_dataset,
    eval_dataset=small_eval_dataset,
    compute_metrics=compute_metrics,
    # 传入callbacks参数
    callbacks=[swanlab_callback],
)

trainer.train()
相关推荐
陈天伟教授8 分钟前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客24036 分钟前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿1 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉1 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中2 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海2 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥2 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在3 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星3 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin3 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能