服务器/Pytorch——对于只调用一次的函数初始化,放在for训练外面和里面的差异

🧩 一、两种写法的差别

位置 写法 模型加载频率 显存占用 启动耗时 适合场景
for 之前 模型在整个测试流程中只初始化一次 1 次 稳定且持续占用较高显存 (仅初始化一次) 适合连续推理多个序列
⚠️ for 内部 每个序列都重新加载一次模型 每个序列 重复加载与释放 显存频繁波动(加载→释放) 慢很多 适合想隔离显存、逐个序列独立推理的场景

🚀 二、显存分析

假设你使用的是类似 LLaVA-7B 或 Qwen2.5-VL 这样的多模态大模型:

  • 模型参数大小约 14~26GB(fp16)

  • 一次加载后,GPU 显存会被持续占用大约 16~24GB

  • 如果每个序列都重新加载模型(放在 for 内部):

    • 每次循环都要重新从磁盘加载 checkpoint(极慢,几十秒)
    • 显存会在加载阶段暴涨,再在释放时回落
    • 很容易出现 "CUDA out of memory" 或碎片化导致显存不够的问题

所以:

⚠️ 放在 for 内部会显著增加显存碎片化风险,尤其是长时间批量测试时。


🧠 三、建议做法

正确推荐方案:

python 复制代码
# ✅ 模型只加载一次
model_mllm, processor_mllm = init_mllm(MODEL_PATH_mllm)

for sequence in sequences:
    # 在不同序列间循环推理
    ...

这种方式虽然每次都会重新加载模型(耗时明显增加),

但能确保每次推理后显存被释放,适合显存只有 24GB 或更小的 GPU。


⚖️ 四、总结对比

放在位置 显存占用 速度 稳定性 推荐程度
for 外部(一次加载) 高(持续) ✅ 快 ✅ 稳定 ⭐⭐⭐⭐(推荐)
for 内部(多次加载) 波动大 ❌ 慢 ⚠️ 容易OOM或碎片化 ⭐(仅低显存下可考虑)

最终建议:

对于你这类结构(多序列测试、多帧视频输入),

模型应当在 for sequence in sequences: 之前初始化一次

并在全部推理完成后统一释放。

除非你的 GPU 显存小于模型权重大小,否则不要在循环中重复加载。

相关推荐
沈浩(种子思维作者)17 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan17 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维17 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS17 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd17 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs18 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T18 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
水如烟18 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
华研前沿标杆游学18 小时前
2026年走进洛阳格力工厂参观游学
python
Carl_奕然18 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析