spark MLlib 中的分类模型

理解这些机器学习模型的数学原理需要一定的数学基础,下面我将简要介绍每个模型的数学原理,并附上相关的数学公式。

1. LinearSVC(线性支持向量机)

数学原理: 线性支持向量机的目标是找到一个超平面,最大化训练数据集中样本点到超平面的间隔,并且使得间隔内没有样本点。其决策函数为:

f(x) = \\text{sign}(\\mathbf{w}\^T \\mathbf{x} + b)

其中,(\mathbf{w}) 是法向量,(b) 是截距。

算法: LinearSVC 使用 Hinge Loss 作为损失函数,并采用 OWLQN(Orthant-Wise Limited-memory Quasi-Newton)算法进行求解。

2. LogisticRegression(逻辑回归)

数学原理: 逻辑回归是一种广义线性模型,其输出通过 logistic 函数进行映射,表示样本属于某个类别的概率。其假设函数为:

h_{\\mathbf{w}}(\\mathbf{x}) = \\frac{1}{1 + e^{-\\mathbf{w}^T \\mathbf{x}}}

算法: 逻辑回归通过最小化交叉熵损失函数来拟合模型参数。常用的优化算法有梯度下降和拟牛顿法(如 LBFGS)。

3. DecisionTreeClassifier(决策树分类器)

数学原理: 决策树通过对特征进行划分,构建一棵树来实现对数据集的分类。其基本算法如下:

  1. 选择最优的特征进行节点划分。
  2. 递归地对每个子节点重复步骤 1,直到满足终止条件(如节点包含的样本数小于某个阈值)。

算法: 决策树分类器通常使用信息增益或基尼不纯度等指标来选择最优的特征进行节点划分,并通过递归地构建树来进行训练。

4. GBTClassifier(梯度提升树分类器)

数学原理: 梯度提升树是一种集成学习算法,其基本思想是通过迭代地训练多个决策树,并使用梯度下降来最小化损失函数。其预测函数为:

F(x) = \\sum_{i=1}\^{N} f_i(x)

其中,(f_i(x)) 是第 (i) 个决策树的输出。

算法: GBTClassifier 通过梯度提升算法训练多个决策树,每次迭代时通过梯度下降来拟合一个新的回归树。

5. RandomForestClassifier(随机森林分类器)

数学原理: 随机森林是一种集成学习算法,其基本思想是通过训练多个决策树,并通过投票或平均值来确定最终的分类结果。其预测函数为:

F(x) = \\text{mode}(f_1(x), f_2(x), ..., f_N(x))

其中,(f_i(x)) 是第 (i) 个决策树的输出。

算法: RandomForestClassifier 通过随机选择特征子集和样本子集来构建每棵树,然后使用投票或平均值来确定最终的分类结果。

6. NaiveBayes(朴素贝叶斯分类器)

数学原理: 朴素贝叶斯分类器基于贝叶斯定理和特征条件独立性假设。其分类概率计算公式为:

P(Y\|X) = \\frac{P(X\|Y)P(Y)}{P(X)}

其中,(P(Y|X)) 是在给定特征 (X) 的条件下类别 (Y) 的后验概率。

算法: NaiveBayes 通过计算每个类别的先验概率和每个特征的条件概率来进行分类。

7. MultilayerPerceptronClassifier(多层感知机分类器)

数学原理: 多层感知机分类器是一种基于神经网络的分类模型,其基本原理是通过多层神经元对特征进行非线性组合和映射。其前向传播公式为:

z\^{(l+1)} = w\^{(l)} a\^{(l)} + b\^{(l)}

a\^{(l+1)} = \\sigma(z\^{(l+1)})

其中,(w^{(l)}) 和 (b^{(l)}) 分别是第 (l) 层的权重和偏置,(\sigma) 是激活函数。

算法: MultilayerPerceptronClassifier 通过反向传播算法来训练多层神经网络,并通过梯度下降来最小化损失函数。

相关推荐
Loo国昌4 小时前
【大模型应用开发】第二阶段:语义理解应用:文本分类与聚类 (Text Classification & Clustering)
人工智能·分类·聚类
BYSJMG5 小时前
计算机毕业设计选题推荐:基于大数据的肥胖风险分析与可视化系统详解
大数据·vue.js·数据挖掘·数据分析·课程设计
2501_941837265 小时前
蘑菇可食用性分类识别_YOLO11分割模型实现与优化_1
人工智能·数据挖掘
木非哲7 小时前
AB实验高级必修课(二):从宏观叙事到微观侦查,透视方差分析与回归的本质
人工智能·数据挖掘·回归·abtest
2501_941652777 小时前
基于DETR模型的棉花品种识别与分类检测研究_r50_8xb2-150e_coco数据集训练
人工智能·数据挖掘
muddjsv8 小时前
2026 数据分析主流语言全景解析:选型、场景与学习路径
数据挖掘·数据分析
2501_941652779 小时前
验证码识别与分类任务_gfl_x101-32x4d_fpn_ms-2x_coco模型训练与优化
人工智能·数据挖掘
放氮气的蜗牛9 小时前
从头开始学习AI:第五章 - 多分类与正则化技术
人工智能·学习·分类
2501_941837269 小时前
基于Mask R-CNN的陶瓷制品缺陷检测与分类系统详解【陶瓷缺陷检测、Mask R-CNN、缺陷分类】
分类·cnn
2501_941652779 小时前
改进YOLOv5-BiFPN-SDI实现牙齿龋齿检测与分类_深度学习_计算机视觉_原创
深度学习·yolo·分类