hadoop部署hive

1.安装mysql数据库

这里采用docker部署mysql,如果没有安装docker

bash 复制代码
#安装yum工具
yum install -y yum-utils device-mapper-persistent-data lvm2 --skip-broken
#设置docker镜像源
yum-config-manager     --add-repo     https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
sed -i 's/download.docker.com/mirrors.aliyun.com\/docker-ce/g' /etc/yum.repos.d/docker-ce.repo
yum makecache fast
#安装docker
yum install -y docker-ce
#查看docker的版本
docker --verison
#启动docker
systemctl start docker
#开机启动
systemctl enable docker
#配置镜像加速器
vi /etc/docker/daemon.json

{
        "registry-mirrors":["https://aa25jngu.mirror.aliyuncs.com"]
}

#重启docker
systemctl daemon-reload
systemctl restart docker

安装mysql

bash 复制代码
#创建mysql数据目录
mkdir -p /docker/mysql/data
#启动mysql容器
docker run -d --name mysql -p 3306:3306 -v /docker/mysql/data:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=123456 mysql:5.7.44

2.配置hadoop

core-site.xml,新增配置

bash 复制代码
        <property>
                <name>hadoop.proxyuser.hadoop.groups</name>
                <value>*</value>
        </property>
        <property>
                <name>hadoop.proxyuser.hadoop.hosts</name>
                <value>*</value>
        </property>

3.下载hive

29 March 2024: release 4.0.0 available
  • This release works with Hadoop 3.3.6, Tez 0.10.3

https://dlcdn.apache.org/hive/hive-4.0.0/apache-hive-4.0.0-bin.tar.gz

mysql jdbc jar

https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.49/mysql-connector-java-5.1.49.jar

bash 复制代码
[root@hadoop1 hadoop]# tar -zxvf apache-hive-4.0.0-bin.tar.gz -C /export/server/
[root@hadoop1 server]# ln -s /export/server/apache-hive-4.0.0-bin/ /export/server/hive
[root@hadoop1 export]# mv mysql-connector-java-5.1.49.jar /export/server/hive/lib/
[root@hadoop1 export]# chown -R hadoop:hadoop /export

4.配置hive

hive-env.sh

bash 复制代码
[root@hadoop1 export]# vi /export/server/hive/conf/hive-env.sh
export HADOOP_HOME=/export/server/hadoop
export HIVE_CONF_DIR=/export/server/hive/conf
export HIVE_AUX_JARS_PATH=/export/server/hive/lib

hive-site.xml

bash 复制代码
[root@hadoop1 conf]# vi /export/server/hive/conf/hive-site.xml
<configuration>
	<property>
		<name>javax.jdo.option.ConnectionURL</name>
		<value>jdbc:mysql://hadoop1:3306/hive?createDatabaseIfNotExist=true&amp;useSSL=false&amp;useUnicode=true&amp;characterEncoding=UTF-8</value>
	</property>
	<property>
		<name>javax.jdo.option.ConnectionDriverName</name>
		<value>com.mysql.jdbc.Driver</value>
	</property>
	<property>
		<name>javax.jdo.option.ConnectionUserName</name>
		<value>root</value>
	</property>
	<property>
		<name>javax.jdo.option.ConnectionPassword</name>
		<value>123456</value>
	</property>
	<property>
		<name>hive.server2.thrift.bind.host</name>
		<value>hadoop1</value>
	</property>
	<property>
		<name>hive.metastore.uris</name>
		<value>thrift://hadoop1:9083</value>
	</property>
	<property>
		<name>hive.metastore.event.db.notification.api.auth</name>
		<value>false</value>
	</property>
</configuration>

create database hive charset utf8;

bash 复制代码
[root@hadoop1 bin]# /export/server/hive/bin/schematool -initSchema -dbType mysql -verbos
[hadoop@hadoop1 data]$ mkdir -p hive/logs
[hadoop@hadoop1 bin]$ cd /export/server/hive/bin
[hadoop@hadoop1 data]$ nohup ./hive --service metastore >> /data/hive/logs/metastore.log 2>&1 &
[hadoop@hadoop1 bin]$ nohup ./hive --service hiveserver2 >> /data/hive/logs/hiveserver2.log 2>&1 &

5.使用内置客户端beeline,或第三方dbeaver

bash 复制代码
[hadoop@hadoop1 bin]$ beeline 
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/export/server/apache-hive-4.0.0-bin/lib/log4j-slf4j-impl-2.18.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/export/server/hadoop-3.3.6/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/export/server/apache-hive-4.0.0-bin/lib/log4j-slf4j-impl-2.18.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/export/server/hadoop-3.3.6/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Beeline version 4.0.0 by Apache Hive
beeline> !connect jdbc:hive2://hadoop1:10000
Connecting to jdbc:hive2://hadoop1:10000
Enter username for jdbc:hive2://hadoop1:10000: hadoop
Enter password for jdbc:hive2://hadoop1:10000: 
Connected to: Apache Hive (version 4.0.0)
Driver: Hive JDBC (version 4.0.0)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://hadoop1:10000> show databases;
INFO  : Compiling command(queryId=hadoop_20240604004120_6c11b3b6-ce13-4c04-a1d2-6bc799a040a0): show databases
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Created Hive schema: Schema(fieldSchemas:[FieldSchema(name:database_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240604004120_6c11b3b6-ce13-4c04-a1d2-6bc799a040a0); Time taken: 0.014 seconds
INFO  : Concurrency mode is disabled, not creating a lock manager
INFO  : Executing command(queryId=hadoop_20240604004120_6c11b3b6-ce13-4c04-a1d2-6bc799a040a0): show databases
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240604004120_6c11b3b6-ce13-4c04-a1d2-6bc799a040a0); Time taken: 0.009 seconds
+----------------+
| database_name  |
+----------------+
| default        |
+----------------+
1 row selected (0.201 seconds)
0: jdbc:hive2://hadoop1:10000> 
相关推荐
bxlj_jcj15 分钟前
Flink时间窗口详解
大数据·flink
诗旸的技术记录与分享15 分钟前
Flink-1.19.0源码详解-番外补充4-JobGraph图
大数据·flink
落霞的思绪43 分钟前
使用云虚拟机搭建hadoop集群环境
大数据·hadoop·分布式
爱思德学术1 小时前
CCF发布《计算领域高质量科技期刊分级目录(2025年版)》
大数据·网络安全·自动化·软件工程
Edingbrugh.南空9 小时前
Flink自定义函数
大数据·flink
gaosushexiangji10 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
无级程序员13 小时前
大数据平台之ranger与ldap集成,同步用户和组
大数据·hadoop
lifallen14 小时前
Paimon 原子提交实现
java·大数据·数据结构·数据库·后端·算法
TDengine (老段)14 小时前
TDengine 数据库建模最佳实践
大数据·数据库·物联网·时序数据库·tdengine·涛思数据