Spark的性能调优——RDD

前言

RDD 是 Spark 对于分布式数据集的抽象,每一个 RDD 都代表着一种分布式数据形态。比如 lineRDD,它表示数据在集群中以行(Line)的形式存在;而 wordRDD 则意味着数据的形态是单词,分布在计算集群中。

参数

参数是函数、或者返回值是函数的函数,我们把这类函数统称为"高阶函数"(Higher-order Functions)。换句话说,这 4 个算子,都是高阶函数。

复制代码
import org.apache.spark.rdd.RDD
val rootPath: String = _
val file: String = s"${rootPath}/wikiOfSpark.txt"
// 读取文件内容
val lineRDD: RDD[String] = spark.sparkContext.textFile(file)
// 以行为单位做分词
val wordRDD: RDD[String] = lineRDD.flatMap(line => line.split(" "))
val cleanWordRDD: RDD[String] = wordRDD.filter(word => !word.equals(""))
// 把RDD元素转换为(Key,Value)的形式
val kvRDD: RDD[(String, Int)] = cleanWordRDD.map(word => (word, 1))
// 按照单词做分组计数
val wordCounts: RDD[(String, Int)] = kvRDD.reduceByKey((x, y) => x + y)
// 打印词频最高的5个词汇
wordCounts.map{case (k, v) => (v, k)}.sortByKey(false).take(5)

在 RDD 的编程模型中,一共有两种算子,Transformations 类算子和 Actions 类算子。开发者需要使用 Transformations 类算子,定义并描述数据形态的转换过程,然后调用 Actions 类算子,将计算结果收集起来、或是物化到磁盘。

换句话说,开发者调用的各类 Transformations 算子,并不立即执行计算,当且仅当开发者调用 Actions 算子时,之前调用的转换算子才会付诸执行。在业内,这样的计算模式有个专门的术语,叫作"延迟计算"(Lazy Evaluation)。延迟计算很好地解释了本讲开头的问题:为什么 Word Count 在执行的过程中,只有最后一行代码会花费很长时间,而前面的代码都是瞬间执行完毕的呢?

相关推荐
更深兼春远11 分钟前
Spark on Yarn安装部署
大数据·分布式·spark
DolphinScheduler社区27 分钟前
真实迁移案例:从 Azkaban 到 DolphinScheduler 的选型与实践
java·大数据·开源·任务调度·azkaban·海豚调度·迁移案例
zhangkaixuan4561 小时前
Apache Paimon 写入流程
java·大数据·apache·paimon
Mxsoft6191 小时前
电力设备绝缘状态分布式光纤传感实时监测与多维度诊断技术
分布式
Java爱好狂.2 小时前
分布式ID|从源码角度深度解析美团Leaf双Buffer优化方案
java·数据库·分布式·分布式id·es·java面试·java程序员
Elastic 中国社区官方博客2 小时前
通过混合搜索重排序提升多语言嵌入模型的相关性
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
J-JunLiang3 小时前
Flink 实时开发:关键知识点
大数据·flink
极造数字3 小时前
从EMS看分布式能源发展:挑战与机遇并存
人工智能·分布式·物联网·信息可视化·能源·制造
liliangcsdn3 小时前
如何使用elasticdump进行elasticsearch数据还原
大数据·elasticsearch·搜索引擎
yumgpkpm5 小时前
Doris 并入CMP7(类Cloudera CDP 7.3.1 404华为鲲鹏ARM版)的方案和实施源代码
大数据·oracle·sqlite·sqoop·milvus·cloudera