Spark的性能调优——RDD

前言

RDD 是 Spark 对于分布式数据集的抽象,每一个 RDD 都代表着一种分布式数据形态。比如 lineRDD,它表示数据在集群中以行(Line)的形式存在;而 wordRDD 则意味着数据的形态是单词,分布在计算集群中。

参数

参数是函数、或者返回值是函数的函数,我们把这类函数统称为"高阶函数"(Higher-order Functions)。换句话说,这 4 个算子,都是高阶函数。

复制代码
import org.apache.spark.rdd.RDD
val rootPath: String = _
val file: String = s"${rootPath}/wikiOfSpark.txt"
// 读取文件内容
val lineRDD: RDD[String] = spark.sparkContext.textFile(file)
// 以行为单位做分词
val wordRDD: RDD[String] = lineRDD.flatMap(line => line.split(" "))
val cleanWordRDD: RDD[String] = wordRDD.filter(word => !word.equals(""))
// 把RDD元素转换为(Key,Value)的形式
val kvRDD: RDD[(String, Int)] = cleanWordRDD.map(word => (word, 1))
// 按照单词做分组计数
val wordCounts: RDD[(String, Int)] = kvRDD.reduceByKey((x, y) => x + y)
// 打印词频最高的5个词汇
wordCounts.map{case (k, v) => (v, k)}.sortByKey(false).take(5)

在 RDD 的编程模型中,一共有两种算子,Transformations 类算子和 Actions 类算子。开发者需要使用 Transformations 类算子,定义并描述数据形态的转换过程,然后调用 Actions 类算子,将计算结果收集起来、或是物化到磁盘。

换句话说,开发者调用的各类 Transformations 算子,并不立即执行计算,当且仅当开发者调用 Actions 算子时,之前调用的转换算子才会付诸执行。在业内,这样的计算模式有个专门的术语,叫作"延迟计算"(Lazy Evaluation)。延迟计算很好地解释了本讲开头的问题:为什么 Word Count 在执行的过程中,只有最后一行代码会花费很长时间,而前面的代码都是瞬间执行完毕的呢?

相关推荐
掘金-我是哪吒1 分钟前
分布式微服务系统架构第158集:JavaPlus技术文档平台日更-JVM基础知识
jvm·分布式·微服务·架构·系统架构
东窗西篱梦36 分钟前
Redis集群部署指南:高可用与分布式实践
数据库·redis·分布式
Acrel_Fanny37 分钟前
Acrel-1000系列分布式光伏监控系统在湖北荆门一马光彩大市场屋顶光伏发电项目中应用
分布式
xufwind43 分钟前
spark standlone 集群离线安装
大数据·分布式·spark
AI数据皮皮侠2 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
半新半旧2 小时前
Redis集群和 zookeeper 实现分布式锁的优势和劣势
redis·分布式·zookeeper
亲爱的非洲野猪2 小时前
Kafka “假死“现象深度解析与解决方案
分布式·kafka
CodeWithMe2 小时前
【Note】《Kafka: The Definitive Guide》第三章: Kafka 生产者深入解析:如何高效写入 Kafka 消息队列
分布式·kafka
虾条_花吹雪2 小时前
2、Connecting to Kafka
分布式·ai·kafka
DeepSeek大模型官方教程3 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习